
Knowledge Discovery with Genetic Programming for

Providing Feedback to Courseware Authors

CRISTÓBAL ROMERO*, SEBASTIÁN VENTURA* and PAUL DE
BRA†
*Dept. of Computer Sciences and Numerical Analysis. University of Córdoba.
14071 Córdoba (Spain). E-mail: cromero,sventura@uco.es

†Dept. of Computer Sciences. Eindhoven University of Tecchnology. PO Box 513,
5600 MB Eindhoven (Netherlands). E-mail:debra@win.tue.nl

July 1, 2004

Abstract. This paper describes how to use evolutionary algorithms as data mining
methods for discovering prediction rules in databases. These rules will be used to im-
prove courseware, especially Adaptive Systems for Web-based Education (ASWE).
Our aim is to discover important dependence relationships among the usage data
picked up during students’ sessions. This knowledge may be very useful for the
teacher or the author of the course, who could decide what modifications will be the
most appropriate to improve the effectiveness of the course. In order to perform the
discovery of rules we have used Grammar-Based Genetic Programming (GBGP) with
multi-objective optimization techniques. Using that, we can interactively specify the
form of the rules and we can choose several evaluation measures of the rules’ quality
at the same time. Finally, we have developed a specific mining tool for discovering
rules which facilitates the usage of the proposed discovering and improving ASWE
methodology.1

Keywords: adaptive system for web-based education, data mining, evolutionary
algorithms, grammar-based genetic programming, prediction rules

1. Introduction

Web-based Education (WBE) is an important research area at present
(Brusilovsky, 2001) due to its beneficial features, such as the physical
location independence of students and teachers, and the independence
of the computer platform used (PC, MAC, UNIX, etc.). The first de-
veloped educational systems were only a net of static hypertext web
pages. This led to navigation and comprehension problems because such
a net provides uncontrolled navigation freedom. In order to solve this
problem, people have started to increase these systems’ adaptability
and adaptivity (Brusilovsky, 1998). The systems have recently been
referred to as Adaptive Systems for Web-based Education (ASWE).

1 This paper (or a similar version) is not currently under review by a journal or
conference, nor will it be submitted to such within the next three months.

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Main.tex; 30/08/2004; 17:41; p.1

2 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

These systems are the result of a joint evolution of Intelligent Tutoring
Systems (ITS) and Adaptive Hypermedia Systems (AHS) and they
have the most desirable characteristics of both: increase of the user
interaction and adaptation to the needs of each student.

The development of an ASWE is a laborious activity (Hérin et al.,
2002), and it is more complex when the number of adaptation possibil-
ities is higher. The developer, usually the course teacher, has to choose
the contents that will be shown, decide on the structure of the contents
and determine which are the most appropriate content elements for
each type of potential user of the course. So, a careful design is not
enough but, in most cases, it is necessary to carry out an evaluation
of the system based on students’ usage information. It would be also
desirable that this evaluation activity was carried out in a continuous
way (Ortigosa and Carro, 2002). In order to do that it is necessary
to use tools and methodologies able to observe the student’s behavior
and to attend teachers in the process of continuous improvement of
ASWEs, detecting possible errors, shortcomings or improvements that
could be carried out.

During the past years, different methods of knowledge discovery or
data mining (Zäıne and Luo, 2001) have begun to be used to help
teachers in the validation of ASWEs. These methods allow to discover
new knowledge starting from the students usage data. This idea has
already been successfully applied in e-commerce systems, in which its
use is very popular (Spiliopoulou, 2000). However, in the area of e-
learning very little research has been done in this direction and this is
the research line to be introduced in this paper.

Data mining (DM) is a multidisciplinary area in which several com-
putation paradigms converge: decision tree construction, rule induction,
artificial neural networks, instance-based learning, bayesian learning,
logic programming, statistics algorithms, etc. (Klösgen and Zytkow,
2002). The objective of data mining is to discover new interesting and
useful knowledge. Evolutionary Algorithms (EA) (Freitas, 2002) are one
of the new methods applied to do it. The main advantages in the use
of EAs over the classical greedy induction algorithms are their ability
to do a global search and the way they treat the attribute interaction
problem. In the context of rule discovery using EAs (Freitas, 1997), an
individual will represent a rule or a group of candidate rules. The fitness
function will correspond to some rule quality evaluation measures. A
selection procedure will use the fitness value to choose the best rules.
Genetic operators will transform the candidate rules into new ones.
So, evolutionary algorithms will perform a search in the space of the
candidate rules in a similar way to what induction algorithms would do.
The difference is in the search strategy used by each one. Thus, classical

Main.tex; 30/08/2004; 17:41; p.2

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 3

learning induction algorithms normally use a local greedy search strat-
egy, while evolutionary algorithms use a global search strategy inspired
by natural selection (Darwin, 1859). There are different approaches to
evolutionary computing. Specifically, we are going to adopt data mining
using grammar based genetic programming (Wong and Leung, 2000).

The knowledge discovered by a data mining method is always de-
sired to be interesting, novel and useful to the end-user (Bayardo and
Agrawal, 1999). So, only a subset of interesting rules should be ex-
tracted from all the discovered rules. And although data mining algo-
rithms usually discover comprehensible and exact rules, these are often
not interesting rules due to the fact that interest is a more ambitious
and difficult objective. There are two methods to select interesting
rules, namely subjective and objective methods (Liu et al., 2000). The
first ones are domain dependent and user directed. On the other hand
the objective methods are data directed, domain independent and they
use some evaluation measure. In this sense there are a great number of
evaluation measures (confidence, support, interest, gini, laplace, etc.)
described in literature (Tan et al., 2002) (Lavrac et al., 1999) (Yao and
Zhong, 1999) that we have summarized in Appendix A: Rule Evaluation
Measures. But each of these measures is centered on a specific aspect of
the discovered rules’ quality and there is no measure that is significantly
better than the other ones in every application domain. For this reason,
it can be necessary to consider several of these measures simultaneously.
A simple way of doing this is to use a combined metric that ponders
by means of weights over each of the measures we use. However, this
isn’t a good approach because the used measures can be in conflict
with each other and can be non commensurable, in the sense that they
evaluate very different aspects of the rule. This problem suggests the
use of a multi-objective approach (Freitas, 2002) for rule discovery. In
this case, the fitness value to be optimized isn’t a unique value, but a
vector of values, where each value measures a different aspect of the
rule quality. Although there is a lot of literature about Multi-Objective
Evolutionary Algorithms (MOEA) (Coello et al., 2002) (Deb, 2001), the
use of MOEA for discovering rules seems to be relatively unexplored
(Ghosh and Nath, 2004).

We have divided this paper in the following sections. First we re-
view the background or research related to the use of data mining in
adaptive educational systems. Secondly we describe the specific knowl-
edge discovery problem we want to resolve and the methodology we
are going to propose to do it. We show students’ usage information
and its preprocessing. Next we present the evolutionary algorithms for
rule discovery that we have developed using multi-objective genetic
programming. After that we present the experimental results of the

Main.tex; 30/08/2004; 17:41; p.3

4 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

different accomplished tests. We then describe the discovered informa-
tion in the form of rule prediction and its use to improve ASWEs.
Finally we draw conclusions to indicate points for further research.

2. Related Work

The current necessity to analyze the great quantity of information
generated daily by web-based applications, has spawned the interest
in using web data mining. Web data mining is the application of data
mining methods to web data (Srivastava et al., 2000). There are three
different types of web mining depending on the data we use:

Web Content Mining. It tries to discover useful information from
web content such as metadata, documents, texts, audio, video,
hyperlinks, etc.

Web Structure Mining. It mines the structure of web hyperlinks,
that represent web site hyperlinks graph.

Web Usage Mining. It uses data generated by user interaction such
as access data (log files), user profiles, transactions, queries, book-
marks, clicks, etc.

The major application areas for web usage mining are (Srivastava
et al., 2000): personalization, business intelligence, usage characteriza-
tion, systems improvement, site modifications, etc. The most developed
applications are e-commerce systems. These specific applications try to
understand clients’ tastes with the objective of increasing web-based
sales (Spiliopoulou, 2000).

A more recent application is personalization (Pierrakos et al., 2003),
which adapts information systems to users’ needs. One case of personal-
ization systems is the use of web mining in educational systems. Using
data mining methods in e-learning systems can provide useful infor-
mation to evaluate and to improve them. Although this research area
is still in its infancy, web-based educational systems that exploit the
advantages of knowledge acquisition are already being developed (Zäıne
and Luo, 2001).

Although discovery methods used in both areas (e-commerce and
e-learning) are similar, the objectives are different depending on the
point of view. From a system’s point of view, there are no differences
between them. Since the objective of applying web mining in both
application areas is to study clients’ behavior (referring to both clients
in e-commerce systems and students in e-learning systems), evaluate

Main.tex; 30/08/2004; 17:41; p.4

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 5

this behavior, and improve the systems to help them. But from a user’s
point of view, there are differences, because the e-commerce objective
is to guide clients in purchasing, and the e-learning objective is to guide
students in learning. So, each of them has special characteristics that
require a specific treatment of the web-mining problem.

Web mining use in education is not new. Some developments have al-
ready been carried out with success, applying data mining in web-based
educational systems. Usually, their applications consist of searching
browsing patterns using one or several of the following algorithms:

• Association rule mining and sequential pattern analysis. It consists
in searching associations among web pages visited, the first, and
analyzing sequences of pages hit in a visit or between visits by
the same user, the second. One of the pioneers in this area are
Omar Zäıne et al. (Zäıne and Luo, 2001). They propose discovering
useful patterns based on restrictions to help educators to evaluate
students’ activities in web courses. They also use recommender
agents for e-learning systems using association rule mining (Zäıne,
2002). The objective is to discover associations between user ac-
tions and URLs. In other research (Yu et. al, 2001) they use data
mining technology to find incorrect student behavior. They modify
traditional web log records that are named learners’ portfolios.
They apply fuzzy association rules to find relationships among the
items with linguistic values like time spent on-line, numbers of
articles read, number of articles published, number of questions
asked, etc. A related research has been carried out by Pahl and
Donnellan (Pahl and Donnellan, 2002). Their work is based on
analyzing each student’s individual sessions. They define the learn-
ing period (of time) of each student. After they split web server
log files in individual sessions they apply session statistics, session
patterns and session time series. Finally, another work is the one
carried out by Wang (Wang, 2002), which uses associative mate-
rial clusters and sequences among them. This knowledge allows
teachers to study the dynamic browsing structure and to identify
some interesting or unexpected learning patterns. To do this, he
discovers two types of relations: association relations and sequence
relations between documents.

• Clustering and classification. This consists of grouping users by
navigation behavior, grouping similar navigation behaviors, etc.
This approach is developed by Tang and McCalla (Tang and Mc-
Calla, 2002). They use data clustering for web learning to pro-
mote group-based collaborative learning and to provide incremen-
tal learner diagnosis. Data clustering finds clusters of students with

Main.tex; 30/08/2004; 17:41; p.5

6 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

similar learning characteristic based on the sequence of pages and
content of each page they have visited. Finally, a specific work
of using evolutionary algorithms for data mining optimization in
educational web-based system is the one carried out by Minaei-
Bidgoli and Punch (Minaei-Bidgoli and Punch, 2003). In this work,
they want to classify students in order to predict their final grade
based on features extracted from the logged data. They use genetic
algorithms to optimize a combination of multiple classifiers by
weighting feature vectors.

In all the mentioned cases, the current approaches use the visited
pages as input data of the search, and so, the result is to discover
different types of relations between them. On the other hand, our
proposal consists of searching relations between concept and chapter
entities of web-based courses, and not between pages. Our objective
is to discover relations to restructure not only the browsing paths but
also the curricula and contents of adaptive web-based courses.

3. Problem Description and Proposed Solution

The task of designing and developing an adaptive system for web-based
education is arduous and laborious (Carro et al., 1999) due to the
fact that the author of the courseware has to take important decisions
about:

• How many chapters or lessons a course consists of and which ones
are the most appropriate for each different knowledge level of stu-
dents. And what is the most adequate organization (navigation
scheme) of these chapters.

• How many concepts a chapter consists of and which ones are the
most appropriate for each student’s knowledge level. And what is
the most adequate organization of these concepts.

• Which activities will be used to evaluate each concept and each
chapter. And what is the most adequate organization of these
activities.

Due to all these decisions, it is very difficult to establish the best
course structure, contents and activities. In fact, it is very likely that
several authors would propose different curricula for the same course.
And also there is an additional problem in this type of systems: the
subjectivity when dividing the course into different difficulty levels or

Main.tex; 30/08/2004; 17:41; p.6

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 7

accessibility levels in order to perform a better adaptation or person-
alization. All the above-mentioned issues show that it isn’t easy to
develop an adaptive system for web-based education. So, we should
improve ASWEs after their construction by means of the evaluation or
validation of the system.

The evaluation of an educational system like ASWEs is a process
of data gathering to determine the value of the instruction. There are
mainly three evaluation paradigms (Arruabarrena et al., 2002): For-
mative Evaluation, Summative Evaluation and Integrative Evaluation.
And there are three kinds of evaluation: Internal Evaluation, External
Evaluation and Global Evaluation. Finally, there are specific evaluation
techniques for ASWEs. Some of these are: (a) Comparison to evaluate
the characteristics of the system versus some standard ones or other
systems. (b) Contact with users to collect data about the user interac-
tion, behavior and attitude. (c) Data analysis for reviewing, studying
and assessing collection of data about certain characteristics. (d) Pi-
lot testing for studying the performance of the system with potential
end-users.

But the problem is that normally teachers only evaluate from a
student’s point of view and they are centered on evaluating the stu-
dents’ learning based on the scores obtained by them. So, the system
is not usually modified after its publications on the web. And if some
modifications are done they are based only on teacher judgement or on
basic statistical information, for example, questions that more students
have failed. But a deeper evaluation of the students’ interaction should
be carried out.

Our specific evaluation proposal is based on the use of data mining
methods on the students’ usage data. The originality of this work is
the type of knowledge we wish to discover. The related research (Zäıne
and Luo, 2001) (Pahl and Donnellan, 2002) (Wang, 2002) (Tang and
McCalla, 2002) we have previously described, carries out the discovery
of associations between visited pages, analyzing sequences of pages,
grouping together browsing patterns or students, etc. But our aim
is different since we are going to discover dependence relationships
among elements and not among pages. These elements can be con-
cepts, chapter, questions, activities, etc. that are contained in one or
several different web pages. We propose a development methodology
that enables us to evaluate and improve ASWEs. This methodology
is recurrent and the higher the number of students using the system
becomes, the more information becomes available to the teacher to
improve the course (Figure 1). In this methodology we have added a
specific evaluation step using data mining techniques.

The proposed methodology consists of four main steps:

Main.tex; 30/08/2004; 17:41; p.7

8 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

Adaptive System for
Web-based Education

ASWE
Authoring

Tool

Teacher

Students

Knowledge
Discovery

Tool Students Usage
Information

Figure 1. Proposed methodology to improve ASWEs

1. Development of the ASWE. This is the first stage of the method-
ology, in which the teacher builds the Hypermedia Adaptive Course
providing information about the domain model, the pedagogic model
and the interface module. To facilitate this task he normally uses an
authoring tool, either of a commercial general-purpose type such
as DreamWeaver, Toolbook, Director, etc. or of specific types such
as AHA! (De Bra et. al., 2003), HamWeb (De Castro and Romero,
2002), etc. The remaining information: the tutor model is usually
provided by the system itself and the data of the student model is
acquired in execution time. Once the teacher finishes the elaboration
of the course, he has to publish the ASWE on a web server.

2. Use of the ASWE. In this stage students log in and use the system
through a web browser; meanwhile in a transparent way the usage
information is picked up and stored in students’ web server log files.

3. Knowledge Discovery. This is the stage of mining for prediction
rules. After the log files have been preprocessed and transferred to
a database the teacher can apply knowledge discovery algorithms
(classical or evolutionary algorithms) to obtain important relation-
ships among the picked up data. In our case, we want to discover
relations between students’ knowledge levels, times and scores. To do
this task, a generic data mining tool like Weka (Witten and Frank,
2000) can be used, or a specific visual tool like EPRules (Romero et
al., 2002).

4. Improving the ASWE. Finally the teacher, using the discovered
relationships, carries out the modifications he considers to be most
appropriate to improve the ASWE. For instance he can modify the
course’s structure (joining concepts, changing concepts from level or
chapter, etc.) and content (eliminating or improving bad questions,

Main.tex; 30/08/2004; 17:41; p.8

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 9

bad content pages, etc.). To do this, he can again use an authoring
tool.

The previously described process can be repeated as many times
as we want, but it must be done when we have enough new students’
usage information. So, it is an iterative process and the ASWE can be
progressively improved as more students use it.

The whole process of knowledge discovery with ASWEs can be car-
ried out by the teacher or author of the course, using the EPRules
tool (Romero et al., 2002). Figure 2 presents the specific process, be-
ginning with the selection and pre-processing of course usage data,
and proceeding with visualizing the rules discovered by applying data
mining algorithms. Rules selected by the author can then be used to
improve the course.

Figure 2. Specific knowledge discovery process

The discovery process always begins with the selection of the database
where the pre-processed usage data of the course to be used are stored.
(These data are taken from log files, preprocessed and then stored in
a database.) Then the knowledge discovery algorithms to be applied
must be selected as well as their specific parameters and both the
objective and subjective restrictions we want the discovered rules to
fulfill. After finishing the algorithm execution, the group of discovered
prediction rules is displayed: the elements of the rule antecedent and
consequent as well as the evaluation measures of each rule are shown,
and it is determined if the group of discovered rules is interesting or
not. This depends on the number of rules, on their quality with respect
to the different measures, and on their semantic meaning. Then it is
decided which of the discovered rules are interesting enough to be
used to take decisions on possible modifications in the course. If the
rules are not considered sufficiently interesting the algorithm is applied
again, with different parameters and restrictions, in order to discover
a more interesting group of rules. The whole process is carried out in a
direct way from the EPRules tool (Romero et al., 2002), a graphic tool
developed specifically to solve the problem of prediction rule discovery
in ASWEs.

In order to show the success of this methodological proposal we
have to prove that there are algorithms for knowledge discovery that

Main.tex; 30/08/2004; 17:41; p.9

10 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

can obtain useful information for the improvement of the system. But
we also need an ASWE for doing the tests with a real system. We
have developed a Linux course using AHA! (De Bra et. al., 2003)
which is the “Adaptive Hypermedia Architecture”. We have made some
modifications to AHA! in order to increase its adaptation power in
education (Romero et al., 2002). More precisely, we want to adapt or
personalize the system to each particular student depending on his/her
knowledge level.

4. Prediction Rule Discovery

The IF-THEN rule is one of the most popular forms of knowledge
representation, due to its simplicity, compressibility and expressive
power (Klösgen and Zytkow, 2002). Depending on the knowledge it
stores, there are different types of rules. In this way, they are referred
to as: decision rules, association rules, classification rules, prediction
rules, causal rules, optimization rules, etc. In the area of knowledge
discovery in databases, the most studied ones are association rules,
classification rules and prediction rules. One example of the generic
format of IF-THEN rules in EBNF (Extended Backus Naur Form) is
shown in Table I.

Table I. Example of the IF-THEN rule format

<rule> ::= IF <antecedent> THEN <consequent>

<antecedent> ::= <condition> +

<consequent> ::= <condition> +

<condition> ::= <attribute> <operator> <value>

<attribute> ::= Each of the possible attributes of the set

<value> ::= Each of the possible values of each attribute domain

<operator> ::= = | > | < | ≥ | ≤ | 6=

4.1. association rules

The objective of association rules (Agrawal et al., 1993) is to look for
relationships among attributes types in databases, taking place in the
antecedent and consequent of the rules. Association rules are typically
used in e-commerce to model the clients’ preferences and purchases.
These rules have the format: IF “user acquires the product A” THEN
“user also acquires the product B” with values of support and con-
fidence (Agrawal et al., 1993) greater than a user-specified minimum

Main.tex; 30/08/2004; 17:41; p.10

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 11

threshold. In the more general form of these rules, the rule antecedent
and consequent can present more than one condition. The confidence of
the rule is the percentage of transactions that contain the consequent
among transactions that contain the antecedent. The support of the
rule is the percentage of transactions that contain both antecedent and
consequent among all transactions in the data set.

4.2. classification rules

The objective of classification rules (Quilan, 1987) is to obtain knowl-
edge in order to create a classification system (similar to a classification
tree). In the antecedent of the rule there are some requirements (in form
of conditions) that should match a certain object so that it can be con-
sidered to belong to the class that identifies the consequent of the rule.
From a syntactic point of view, the main difference with association
rules is that they have a single condition in the consequent which is the
class identifier name.

4.3. prediction rules

The objective of prediction rules (Noda et al., 1999) is to predict an ob-
jective attribute depending on the values of another group of attributes.
Its syntax is similar to classification rules that have only one condition
in the consequent, but now it is similar to any other condition (about
the value of the attribute to predict). And any of the attributes would
appear in the consequent of the rule as it occurs in association rules.

We are going to discover prediction rules through a dependence
modeling task. This data mining task consists of the prediction of
relations between attributes specified or not by the user (Freitas, 2002).
Prediction rules are very popular in data mining because they usually
represent discovered knowledge at a high level of abstraction and it can
be used directly in the decision making process. Dependence modeling
can be considered as a generalization of discovering classification rules
or a specialization of discovering association rules. However, the task
of dependence modeling involves a wider notion of dependence than
classification does, and it is usually associated with a much wider search
space. Also, the classification task is very asymmetric with regard to
the attributes, since the objective attribute or class can only occur
in the consequent and the prediction attributes in the antecedent. And
although the association task is symmetric with the attributes, like with
prediction rules, several attributes may occur at the same time in the
rule consequent. Another difference is that association rule discovery
tries to find only the rules with at least some minimal support and
confidence.

Main.tex; 30/08/2004; 17:41; p.11

12 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

The typical knowledge discovery process we are going to perform is
shown in Figure 3.

PreprocessingInformation Data Mining PostProcessing Knowledge

Figure 3. Generic knowledge Discovery Process

The typical knowledge discovery process we are going to perform is
shown in Figure 3. As we can see, data mining is only one step of the
full process of knowledge discovery (Mitra et al., 2001) that consists of:

Preprocessing. This consists of the data gathering, data cleaning,
conversion of continuous data, attribute selection, data integration,
etc. We have to preprocess students’ usage information picked up
during their use of the course and stored in log files. We have to
identify the specific information for each student, too.

Data Mining. This consists of the application of a data mining task:
classification, regression, clustering, rule discovery, etc. We are
going to do prediction rule discovery.

Postprocessing. This consists of the interpretation, evaluation of the
obtained results and the utilization of the discovered knowledge.
We are going to use this information with the objective of making
decisions in order to improve ASWEs.

In the following sections, we are going to describe each of these
stages in detail for our specific problem of improving ASWEs. We
then describe our proposed solution of using knowledge discovery with
evolutionary algorithms.

5. Description of Students’ Usage Information

Normally the information used in web mining is the information stored
in typical web server log files. But this rough information deals only
with visited pages and times of request from a determined internet ad-
dress. In the case of ASWEs we need a higher level of information about
each student (Heift and Nicholson, 2000). So, we have to enhance server
log files adding information about: scores obtained in activities, times
of reading pages, knowledge level obtained in concepts and chapters,
etc.

We have developed an adaptive web-course of LINUX using AHA!
version 1.0 (Romero et al., 2002) to obtain the usage information we

Main.tex; 30/08/2004; 17:41; p.12

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 13

need. AHA! is a general architecture for developing adaptive hyperme-
dia applications. We have chosen AHA! to build up and improve our
course because: (a) it lets us convert any type of web-based applications
into adaptive versions, (b) it stores usage information in log files, (c) it
has an adaptive engine which uses adaptation techniques (conditional
inclusion of fragments and hiding or annotation of links) and (d) its
source code is available (De Bra et. al., 2000). It has been necessary to
modify AHA! in order to be able to perform the adaptation depending
on the knowledge level of each particular student. To do this, we have
performed the following changes (Romero et al., 2002) in:

Domain Model . We use the typical structure of educative material
by adding levels. So, a course consists of several chapters organized
in lessons that have several concepts divided in difficulty levels (we
use three levels: HIGH, MEDIUM and LOW).

User Model . We have implemented students’ knowledge for each
concept and each chapter through discrete values: 0 (NOT YET
READ), 10 (BEGINNER), 50 (NORMAL), 100 (EXPERT).

Adaptation Engine . We have performed the adaptation from a chap-
ter view point (Figure 4) and it consists of: Before starting a new
chapter students have to do an initial adaptive test to obtain their
initial knowledge level. Then the system presents only the concepts
which have the appropriate difficulty level. Next, the students have
to read the exposition content pages and perform the evaluation
activities for each concept. Eventually they have to do a final test
to evaluate their knowledge about this chapter. Depending on the
obtained level, students may repeat the chapter at the same level
(if they obtain a BEGINNER level) or they can go to a higher
level of the same chapter or they can pass to another chapter (if
they obtain a NORMAL or EXPERT level). For each new chapter,
everything previously mentioned starts again: first initial test, then
exposition and activities pages, and next the final test.

The specific usage information we are going to use for discovering
prediction rules is collected from a course about the operating sys-
tem LINUX, developed with the modified AHA! system. This course
has been taken by 50 students in computer science engineering at the
Cordoba University. We have modified AHA! in order to increase its
adaptation power in education (Romero et al., 2002). More precisely, we
wanted to adapt or personalize the system for each particular student
depending on his knowledge level. In figure 5 the same chapter of
the course is shown at three different difficulty levels (with different

Main.tex; 30/08/2004; 17:41; p.13

14 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

concepts and background color): beginner(left), normal(middle) and
expert(right).

Initial Test
adaptive
with few

questions
about all
chapter

concepts

Set Initial
Level

and select
difficulty level

to present
chapter

Final Test
only

concept
with

difificulty
level 2

Activity

Set
concept level

INITIAL
EVALUATION Difficulty level 0

Difficulty level 1

Difficulty level 2

Concept 1.1

Activity

Concept 0.1 Activity

Concept 2.1

CONCEPTS EVALUATION
FINAL

EVALUATION

Chapter 2

COURSE

Chapter 1

Chapter 3

Chapter 2

Chapter N

Set
concept level

Set
concept level

Lesson 0.1

Lesson 1.1

Lesson 2.1

Lesson 2.2

Final Test
only

concept
with

difificulty
level 1

Set Final
Level

 and select
next difficulty
level of the

same
chapter or
anothers
chapter

Lesson 1.2

Final Test
only

concept
with

difificulty
level 0

Lesson 0.2

Figure 4. Modified AHA! adaptation engine

Figure 5. Three different levels of the Introduction Chapter of the Linux course.

The original AHA! (1.0) stores usage information for each student
in two log files (called “log” and “model”) in which information about
user navigation and user knowledge are stored. We have added another
log file (called “test”) to store the scores of activities and test questions.
The specific content of these three files for each student are:

Log is a text file that contains information about the name and the
time (in seconds) of each visited page.

Main.tex; 30/08/2004; 17:41; p.14

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 15

Model is an XML file that contains information about the knowledge
levels students have for each concepts and chapter, in a numerical
form (value 0, 10, 50 or 100).

Test is a text file that contains information about the success or failure
that students have in the test or activities questions (YES or NO
respectively).

5.1. Data Preparation

Before we can apply data mining algorithms we have to transform
and move all information stored in the previous logs files into a (rela-
tional) database. We have done it to facilitate and to increase the speed
of algorithms. During this process we have carried out the following
preprocessing task (Freitas, 2002): attribute selection, data cleaning,
discretization of continuous attributes and data integration.

5.1.1. Attribute selection
The main goal of attribute selection is to select a subset of relevant
attributes, out of all available attributes of the data being mined. We
have selected the attributes in a manual way. The chosen ones are:
user name (name students), course (name of the course), name (of
the element), type (exposition page, activity page, test page, concept
or chapter), difficulty (assigned navigation level), repetition (number
of repetitions), time (interval time used), score (obtained success or
failure), level (obtained knowledge level).

5.1.2. Data cleaning
This consists of looking for and rejecting erroneous, duplicate and ir-
relevant data. We have discovered several types of errors: high times
(higher than 10 minutes), incomplete data (incompletely visited chap-
ters and unfinished tests and activities). And we have also discovered
several types of irrelevant data: container pages (frame pages), index
or content pages, help pages and log out pages. We have rejected all
this information.

5.1.3. Transforming continuous attributes
This consists of transforming continuous attributes into discrete at-
tributes that can be treated as categorical attributes. The basic idea
is to partition the value domain of a continuous attribute into a small
number of intervals. We can choose among the following unsupervised
global methods (Dougherty et al., 1995): the equal-width method, equal-
frequency method or the manual method (in which you have to specify

Main.tex; 30/08/2004; 17:41; p.15

16 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

the cut-off points.). We have only transformed one attribute: time. We
have assigned to it three values or labels: HIGH, MEDIUM and LOW,
using the equal-width method.

5.1.4. Data Integration
The goal of data integration is to group together all the data that come
from different sources making up a data warehouse. In our case, we have
gathered all preprocessed data from the log files (log, model and test) of
each student in a MySQL relational database (Dubois, 2002). We have
used MySQL because is portable, fast and freeware. In Figure 6 we
show the relational scheme of the students’ usage information database
we have used.

Student

PK ID_Student

Name
Passw ord
Course

Element

PK ID_Element

Name
Type
Difficulty

Student-Element

PK,FK1 ID_Student
PK,FK2 ID_Element
PK ID_Repetition

Time
Score
Level

Figure 6. Database Relational Scheme

6. Evolutionary Algorithms for Rule Discovery

The task of rule discovery has been approached using different paradigms:
construction of decision trees, inductive learning, instance-base learning
and more recently neural nets and evolutionary algorithms (Witten and
Frank, 2000). The construction of decision trees algorithms is the most
used at the moment in data mining. They are very fast and surprisingly
effective to find precise classifiers. But, as they use greedy heuristics to
divide data, they may fail to find some multi-variable relationships.
Inside the conventional rule learning algorithms there is a wide variety
of alternatives whose common characteristic is to perform a more metic-
ulous search than the previous ones. On the other hand evolutionary
algorithms are able to carry out many meticulous searches. They can do
an implicit step back in the search of rule space that will allow to find
complex interactions among attributes that other types of algorithms
are not able to find.

Evolutionary algorithms are a paradigm based on the Darwin evolu-
tion process (Darwin, 1859), where each individual codifies a solution
and evolves to a better individual by means of genetic operators (mu-
tation and crossover). The main advantages in adopting EAs are (Dhar

Main.tex; 30/08/2004; 17:41; p.16

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 17

et al., 2000) the ability to work in a search space thoroughly, and the
ability to allow arbitrary fitness functions in the search. Their main
disadvantages are lack of speed and randomness in creating the initial
population. The main motivation to use evolutionary algorithms for
rule discovery is that they perform a global search and cope better
with attribute interaction than greedy rule algorithms commonly used
in data mining. Most data mining methods are based on the rule in-
duction paradigm, where the algorithm usually performs a kind of local
search. Also, the fitness function in evolutionary algorithms evaluates
the individual as a whole, i. e. all the interactions among attributes are
take into account. In contrast, most rule induction methods select one
attribute at a time and evaluate partially constructed candidate rules,
rather than full candidate rules.

We can view rule prediction discovery with evolutionary algorithms
from two different viewpoints: restricted or unrestricted. In the re-
stricted way (Freitas, 2002), the problem is treated as classification
rule discovery in which users have to specify the attribute or attributes
to be predicted. So, individuals only represent the rule antecedent con-
ditions. The objective is to discover the best conditions that predict
the previously set attributes. In the unrestricted way (Romero et al.,
2002), the problem is treated as association rule discovery. And the
individuals represent complete rules with the antecedent and the con-
sequent condition. In this case the objective is to discover the best rules
that predict any attribute. We are going to use the unrestricted way,
but users can specify some filters to find certain types of rules (with
a concrete type of condition in the rule antecedent or consequent, a
maximum number of conditions in the rule, etc.)

6.1. Grammar Based Genetic Programming for Discovering
Prediction Rules

There are different paradigms of Evolutionary Algorithms (EA): Evo-
lutionary Programming (EP), Evolutionary Strategies (ES), Genetic
Algorithms (GA) and Genetic Programming (GP). But the most used
EA to solve rule discovering problem are GA and GP.

Genetic Algorithms (GA) for rule discovery can be divided into two
main approaches (Freitas, 2001), based on how rules are encoded in the
population of individuals:

Michigan approach. In this approach, each individual encodes a sin-
gle prediction rule.

Pittsburgh approach. In this approach, each individual encodes a
set of prediction rules.

Main.tex; 30/08/2004; 17:41; p.17

18 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

The most used approach is Michigan, in which an individual is usu-
ally a linear string of rule conditions, where each condition is often an
attribute-value pair. This approach makes the individual encoding sim-
pler and syntactically shorter. On the other hand, with the Pittsburgh
approach the individual encoding is more complicated and syntactically
longer, but the fitness of an individual can be evaluated by considering
its rule set as a whole.

Genetic Programming (Koza, 1992) is like a version of Genetic Algo-
rithms that uses trees to represent individuals. In fact, the algorithms of
both approximations are the same. And although GA is a most widely
used, GP can be considered as a more open-ended search paradigm.
In general, GP has a higher expressivity and can discover interesting
and surprising rules (Gilbert et al., 1998). The search performed by GP
can be very useful, since it can produce many different combinations of
attributes. A basic genetic programming system consists of five compo-
nents (Koza, 1992): representation for programs or genome structure,
a procedure to initialize a population of programs, a fitness function
to evaluate the performance of the program, genetic operators, and
parameters.

In GP an individual is usually represented by a tree, with rule
conditions and/or attributes values in the leaf nodes and functions in
the internal nodes. But there is a problem when encoding rules into
a GP individual, due to the closure property of GP (Freitas, 2001),
which requires that the output of a node can be used as the input
to any parent node in the tree. There are different approaches of GP
that cope with the requirement of closure: Strongly Typed Genetic
Programming (STGP) or Constrained-Syntax Genetic Programming,
Grammar Based Genetic Programming (GBGP), etc.

The GBGP or Grammar Guided Genetic Programming (GGGP)
represents individuals as a derivation tree of a grammar defined by
the user to specify the problem solution space (Whigham, 1995).
GBGP systems use grammars to set syntactical constrains on pro-
grams. The use of grammars also helps to overcome the closure re-
quirement in canonical genetic programming, which cannot always be
readily fulfilled. The grammar can be used to enforce elaborate seman-
tic restrictions based on the domain knowledge provided by a domain
expert.

We have chosen GBGP due to its expressivity and capacity to in-
teract with the user in which he can select different types of desired
rules by restricting only the grammar. GBGP has demonstrated high
performance on a number of problems and it has been considered one
of the most promising areas in the field of research on genetic pro-

Main.tex; 30/08/2004; 17:41; p.18

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 19

gramming (Nordin et al., 1998). Next, we are going to describe several
examples of using Genetic Programming for rule discovery.

One of the first works that use GP to perform knowledge discovery
is the MASSON system (Yyu and Eick, 1996). It is centered on the
problem of discovering the common characteristics that are shared by a
set of objects belonging to an object-oriented database. The commonal-
ities between a set of objects are specified using object-oriented queries.
MASSON employs GP to search interesting queries and evaluate them
to see whether queries compute the same set of objects given by the
user.

Another related work is done by Ratle and Sebag (Ratle and Sebag,
2000) who uses genetic programming for machine discovery of empirical
laws. They propose a way of enforcing dimensional constraints through
formal grammars, to restrict the GP search space to dimensionally ad-
missible laws. They use grammar rules for incorporating dimensionality
constraints in GP and they use an initialization procedure based on a
dynamic pruning of the grammar, in order to generate only feasible
trees of prescribed derivation depth.

A different work, that uses genetic programming to discover classi-
fication rules for diagnosing certain pathologies in medical databases is
done by Bojarczuk et. al (Bojarczuk et al., 2001). They use constrained-
syntax GP, in which some restrictions should be considered in order to
have a valid rule. They use databases of medical domains: chest pain,
dermatology and breast cancer, for discovering high level, comprehen-
sible classification rules.

One specific example of data mining using grammar based genetic
programming is done by Wong and Man (Wong and Leung, 2000)
in LOGENPRO (The LOGic grammar-based GENetic PROgramming
system). They use Inductive Logic Programming (ILP) and genetic pro-
gramming to set syntactical and semantic restrictions . They describe
a framework, called GCP (Generic Genetic Programming), that inte-
grates genetic programming with a formalism of logic grammars. This
formalism is powerful to represent sensitive information and domain-
dependent knowledge. This knowledge can be used to increase the
learning speed and/or improve the quality of the knowledge induced.

Finally, other work that use a genetic programming framework for
two data mining tasks: classification and generalized rule induction is
done by Freitas (Freitas, 1997). He emphasizes the integration between
a GP algorithm and relational database systems. This integration leads
to minimization of data redundancy and to improvement of scalability,
data-privacy control and portability.

As we can see, most of the works using Genetic Programming for rule
discovery are focused on classification rules. In this specific approach

Main.tex; 30/08/2004; 17:41; p.19

20 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

the rule consequent is a single name (the name of the class) and not a
typical condition (attribute-value pair). Due to this, many approaches
only encode the antecedent of the rule in the individuals. But our ap-
proach is more general, in the sense that we want to discover prediction
rules, more generally than classification rules (See Section Prediction
Rule Discovery). The main difference in our approach is that we encode
together in the individuals both the antecedent and the consequent of
the rules.

Next, we are going to describe our approach to Grammar Based
Genetic Programming for discovering prediction rules.

6.2. Individuals Encoding

In individuals encoding with Evolutionary Algorithms we have to dis-
tinguish between the phenotype and the genotype of individuals, espe-
cially in our GBGP approach:

Genotype. The genotype is the genetic composition of the individual.
The genotype of our individuals is a syntax tree of instructions,
which we have implemented as an integer list (Ventura et al., 2002).

Phenotype. The phenotype is the meaning of the genetic material for
the user. The phenotype of our individuals are prediction rules.
The meaning of these rules is provided by a grammar. Each indi-
vidual generated by the GBGP is evaluated against the database
using several queries in order to compute the contingency table
(see Appendix A. Rule Evaluation Measures).

The grammar we have used to generate the individuals that repre-
sent prediction rules is shown in Table II. Prediction rules consist of
an antecedent with several conditions and consequents with only one
condition. Each condition relates to an attribute (about time, success
and level) with one possible value of this attribute. We have not shown
all the terminal symbols of valid attribute names because there are a
lot of them (all the names of web-pages, questions, activities and tests).

All the values of the attributes are categorical or nominal. In Ta-
ble III we show the functions or non-terminal symbols we have used in
our grammar.

Main.tex; 30/08/2004; 17:41; p.20

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 21

Table II. Rule Prediction Grammar in EBNF

<rule> ::= IF <antecedent> THEN <consequent>

<antecedent> ::= <antecedent> AND <condition> | <condition>

<consequent> ::= <condition>

<condition> ::= <level-attribute> = <level-value> |
<time-attribute> = <time-value> |
<success-attribute> = <success-value>

<level-attribute> ::= LEVEL.Name of a valid level attribute

<time-attribute> ::= TIME.Name of a valid time attribute

<success-attribute> ::= SUCCESS.Name of a valid success attribute

<level-value> ::= BEGINNER | NORMAL | EXPERT

<time-value> ::= HIGH | MEDIUM | LOW

<success-value> ::= YES | NO

Table III. Functions and arguments

Functions Input arguments Output arguments

IF THEN boolean boolean

AND categorical boolean

= categorical categorical

In Figure 7 an example rule is shown and the derivation tree gener-
ated by our grammar to represent this rule.

The rule in Figure 7 shows that students, evaluated as EXPERT
in the concept CHARACTERISTIC in the INTRODUCTION chapter
at the HIGH level, fail question number two of the activity of this
concept, and they also need a HIGH time to answer that question.
So, this rule shows that something is wrong with this question and the
teacher should review it (in relation to the information that is supposed
to prepare the students for the question).

6.3. Evolutionary Algorithm

The evolutionary algorithm we have implemented to discover prediction
rules is a generational GP with a external elitism file. So, we use two
different groups of individuals. The first one represents the current
population in each generation, and the second one represents the elite
population or best individuals that finally will be returned to the user

Main.tex; 30/08/2004; 17:41; p.21

22 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

IF SUCCESS.characteristic-introduction-high(2)=NO AND
TIME.characteristic-introduction-high(2)=HIGH

THEN
LEVEL.characteristic-introduction-high=EXPERT

<rule>

IF <antecedent> THEN <consequent>

<condition>AND

<t-attribute> <time-value>= <l-attribute> <level-value>=

<s-attribute> <success-value>=

<antecedent> <condition>

<condition>

SUCCESS.characteristic-
introduction-high(2)

TIME.characteristic-
introduction-high(2)

HIGH
LEVEL.characteristic-

introduction-high

NO

EXPERT

Figure 7. Derivation tree of example rule

as a set of discovered rules. In Table IV we show the evolutionary
algorithm.

Table IV. Evolutionary Algorithm

Begin

Generate an initial population P from selected data

Create an empty file E

While (current-generation < max-generation) do

Select parents from P and E individuals.

Apply genetic operator over selected parents.

Evaluate obtained children with multi-objective or single-objective approach.

Update individuals in P and add the best news individuals to E.

Increase current-generation by one.

End While

End

The first step in the algorithm is to create the initial population P
(with fixed size) from the initial data selected by the user (see Section
Initialization). We have also to create an external file E (with variable
size) that is empty initially, but we will store in E the best individuals
of the current population in each generation step. Then we select the
parents from the current population P and elite file E to reproduce
(see Section Selection), although the first time we select them only

Main.tex; 30/08/2004; 17:41; p.22

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 23

from P. The children are generated by applying genetic operators (see
Section Genetic Operators) and later they are evaluated using a multi-
objective or single-objective approach (see Section Evaluation). Next
the elite population is updated adding the best new individuals of the
current population P. The process finishes when a maximum number
of generations are done.

Next we are going to describe separately each component of our
GBGP algorithm.

6.4. Initialization

Initialization consists of generating a group of initial rules. First, the
teacher has to select which data he wants to use to compose the initial
rules. He can choose to use: all available values, a range of values (those
with a relative frequency greater than a specific threshold), frequent or
infrequent values (see Figure 8). These initial elements are used only
to compose initial rules.

0 1All 0 1Frequents > 0.5 0 10.2 < Range< 0.9

Figure 8. Group of initial elements

There are two reasons for allowing the use of different initialization
data. The first is to compare the algorithm’s performance with different
types and number of data: (a) a large amount of data (namely all data),
(b) a small amount of data that is the most frequent data and (c) an
average number of data that is the range data. And the second is that
it can be more logical not to use all data, but to use a representative
data set. We propose to use range data, better than only very high
frequent (that almost all students match) or very low frequent (that
almost any student match) data.

After this, we compose the rules from these initial data, choosing
randomly what elements or data are going to be set in the antecedent
and consequent of the rules.

The size of the rule varies dynamically depending on the number
of elements in the antecedent. The last element always represents the
consequent. The user can specify a maximum size for all the rules. After
creating the initial population and the other new populations (applying
a genetic operator) in each generation, we have to verify that the rules
are always correct. Although all rules generated by our grammar (see
Table II) are syntactically correct, it is possible that some of them may
be semantically incorrect. For example, rules with the same condition

Main.tex; 30/08/2004; 17:41; p.23

24 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

in the antecedent and consequent of the rule, or rules with a repeated
condition in the antecedent of the rule. This problem is due to the fact
that we use a free-context grammar. To solve it, we repair incorrect
individuals by mutating the causing conditions (again) until the rules
are correct, before individuals are evaluated.

The elite population is generated in a different way depending on
the evolutionary algorithm used: mono-objective or multi-objective. In
the case of using only one evaluation measure, we set a threshold so
that the individuals with a higher value will be added to the elite group.
And in the case of using several evaluation measures at the same time,
we use approaches based on the concept of Pareto Front (Fonseca and
Fleming, 1993), in which non-dominated individuals are always chosen
to be added.

6.5. Genetic Operators

The genetic operators we have used are selective crossing, selective
mutation (Whigham, 1995) and reparation.

6.5.1. Selective crossing
Selective crossing is analogous to crossing trees in genetic program-
ming, in which two subtrees of each parent tree are mixed to form
two new child trees. But in selective crossing, the crossing point has
to be selected from non terminal symbols and has to be the same in
both subtrees to be crossed. Also, the subtrees to exchange have to
be semantically compatible. In our specific rules the selective cross-
ing can carry out five different operations: exchange rule antecedents,
exchange rule consequents, exchange rule conditions, exchange rule
condition attributes and exchange rule condition values. We can vary
the probability of each operation when we configure the parameters of
the algorithm.

6.5.2. Selective mutation
Selective mutation is also analogous to mutation trees in genetic pro-
gramming, in which a subtree of a tree is mutated to create a new tree.
But selective mutation rebuilds only a specific subtree that has a non-
terminal root node. This operator maintains the population diversity
and we can also vary the probability of each non terminal symbol to
be root node in the mutation.

6.5.3. Reparation
Reparation is a specific operator to repair incorrect individuals. An
individual can be syntactically correct (generated by the grammar) but

Main.tex; 30/08/2004; 17:41; p.24

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 25

semantically incorrect to the user (one rule with the same condition
in the antecedent and consequent, or with duplicate conditions). To
solve this problem we use the reparation operator which change the
conflicting condition by applying a simple mutation of the condition
until the problem disappears.

6.6. Evaluation

Evaluation consists of calculating the fitness function, i. e. the quality
evaluation function of the current rules. There are a lot of evaluation
rule measures (Tan et al., 2002) (Lavrac et al., 1999) (Yao and Zhong,
1999) that come from statistics, machine learning and data mining
(see Appendix A: Rule Evaluation Measures), each of them trying to
evaluate one feature of the rule (precision, interest, reliability, com-
prehension, simplicity, etc.). But there is no single measure that is the
best in all the application domains. The previous considerations suggest
to use several measures, similar to a problem of multi-objective opti-
mization (Fonseca and Fleming, 1993). In this case, there isn’t a single
aptitude function, but rather there are several functions to optimize
simultaneously. There are different approaches to solve the problem
of the multi-objective optimization with evolutionary algorithms: one
approach is to use aggregation functions, another is to use the concept
of Pareto Front.

6.6.1. Aggregation Function
In this case, the evaluation function is a linear combination of differ-
ent measures to optimize (Deb, 2001). The weight of each component
in the linear combination represents the relative importance of each
single measure in the global function. There are several examples of
aggregation functions used in the task of rule discovery; some of them
are:

Aggregation function proposed by Araujo (Araujo et al., 1999)
consists of two components (Equation 1): the first one uses the
J-measure (Smythe and Goodman, 1992) that is related to the
interest of the rule, and the second uses the number of potential
attributes of the antecedent.

Fitness(A → C) =
w1 ∗ J1 ∗ w2 ∗ npu

nT

w1 + w2
(1)

where J1 is the one-sided variant of the J-measure, npu is the
number of potentially useful attributes in the antecedent, nT is
the total number of attributes in the antecedent, and w1, w2 are
user-defined weights.

Main.tex; 30/08/2004; 17:41; p.25

26 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

Aggregation function proposed by Liu (Liu and Kwok, 2000) con-
sists of three components (Equation 2): the first one is the Laplace
(Bayardo and Agrawal, 1999) to measure rule consistency, the sec-
ond represents the rule completeness and the third one represents
the rule generality (Liu and Kwok, 2000).

Fitness(A → C) = w1 ∗ Lap(A → C) + w2 ∗ p(AC)
p(C)

+w3 ∗ Simp(A → C) (2)

where Lap is the Laplace measure, p is the relative frequency, Simp
is the simplicity measure which decrements when the number of
conditions in the rule antecedent increases, and w1, w2 and w3 are
user-defined weights.

Aggregation function proposed by Freitas (Freitas, 2002) con-
sists of two components (Equation 3): the first represents the rule
accuracy and the second the rule comprehensibility (Liu and Kwok,
2000).

Fitness(A → C) = w1 ∗ p(AC)
p(AC) + p(A¬C)

+ w2 ∗ Simp(A → C)

(3)
where p is the relative frequency, Simp is the simplicity, and w1
and w2 are user-defined weights.

6.6.2. Pareto Front
The algorithms based on the concept of Pareto Front (Fonseca and
Fleming, 1993) use a vector of objectives to optimize within each indi-
vidual. The purpose is to make population converge towards the group
of best solutions denominated as Pareto Front. The solution is the best
in terms of all objectives together and not in any specific objective.
There are different types of algorithms inside this approach, some of
them are:

MOGA. The algorithm MOGA (Multi-Objective Genetic Algorithm)
(Fonseca and Fleming, 1993) is based on the idea of ordering
individuals depending on their non-dominance. The order (rank)
of each individual corresponds to the number of individuals by
which it is dominated. The non-dominated individuals have an
order value of one, while the rest are penalized according to the
number of individuals by which they are dominated. An individual
is dominated by another individual if it is equal or worse in some
of the objectives.

Main.tex; 30/08/2004; 17:41; p.26

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 27

NSGA. The algorithm NSGA (Non-dominated Sorting Genetic Algo-
rithm) (Srinivas and Deb, 1994) is based on several steps of classifi-
cation of individuals. It also establishes ranges between individuals
based on their non-dominance. First the population is ordered
using the non-dominance concept. Then the aptitude is assigned
to each individual depending on its range inside the population
and using an aptitude sharing method.

Finally, in all evolutionary algorithms based on the concept of Pareto
Front, it is necessary to choose the specific objectives to use. In our
case, we have to choose what the rule quality evaluation measures are
which we want to optimize. According to some research (Freitas, 2002)
the discovered knowledge by a data mining algorithm should satisfy
three main aspects: it should be accurate (certainty), interesting (novel,
surprising, useful) and comprehensible (simple). We have used three
criteria to measure the quality of the rules:

Accurate . The concept of rule accuracy (Lavrac et al., 1999) we have
used is the same as confidence in association rule mining, in which
rule accuracy measures the reliability of the rule in the prediction
of positives cases, since it measures the correctness of returned
results. So we measured the accuracy of the discovered rules using
the whole data set, as is done in association rule mining and not
using different test and training sets as done in classification.

Interesting . Rule interestingness (Piatesky-Shapiro and Metheus, 1994)
can be measured using two types of measures: subjective (user-
driven) (Silberschatz and Tuzhilin, 1995) or objective (data-driven)
(Tan et al., 2002). We have used user constraints about the knowl-
edge he wants to discover and an objective rule interestingness
measure.

Comprehensible . The discovered knowledge must be comprehensi-
ble (Askira-Gelman, 1998) to the user. To achieve this goal we
have used a high level knowledge representation (using IF-THEN
rules), we measure the size of the rule (number of conditions) and
we count the number of discovered rules.

For this reason, we have used a vector of three values where each
one measures one of these aspects. The specific measures we have used
are:

• Certainty Factor. The Certainty Factor (C. F.) (Shortliffe and
Buchanan, 1975) is a measure about the rule precision and it can
be used instead of the confidence with better results (Delgado et

Main.tex; 30/08/2004; 17:41; p.27

28 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

al., 2001). The certainty factor of a rule A → C, where A is the
antecedent of the rule, and C is the consequent of the rule, is

CF (A → C) = max(
p(C/A)− p(C)

1− p(C)
,
p(A/C)− p(A)

1− p(A)
) (4)

where max is the maximum function and p is the relative fre-
quency.

• Interestingness. The interestingness (Tan et al., 2002) is a mea-
sure related to the rule interest that can be better than the classic
Piatetsky-Shapiro measure of interest (Silverstein et al., 1998). The
interestingness of a rule A → C, is

IS(A → C) =

√
I(A → C) ∗ p(CA)

N
(5)

where I is the Piatetsky-Shapiro measure of rule interest, p is the
relative frequency and N is the total number of data instances.

• Simplicity. The simplicity (Liu and Kwok, 2000) is a measure
about rule compressibility so that the shorter the rule is the more
comprehensible. The simplicity of a rule A → C, is

Simp(A → C) = (1− AntecedentSize

MaximumSize
) (6)

where AntecedentSize is the number of conditions in the antecedent and
MaximumSize is the maximum number of condition in the antecedent.

We have selected these tree measures because several referenced
works (Delgado et al., 2001), (Tan et al., 2002), (Liu and Kwok, 2000)
have proven that they offer insight individually. And our objective is
to prove that using them together in a multi-objective function, they
can offer a better insight.

6.7. Selection

Selection consists of the choice of the rules from the population P
and from the elite population E to be parents in the reproduction
(by crossing or mutation). We use rank-based selection or linear rank-
ing (Michalski, 1998) that first ranks the population according to its
evaluation value (fitness function value) and then every rule receives its
final fit from its ranking. Hence, the worst rule (rule with less fitness
value) will set fitness 1, the second worst 2, etc. and the best will set
fitness N (where N is the number of rules in the population). Parents

Main.tex; 30/08/2004; 17:41; p.28

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 29

are selected according to their fitness. With this method all the rules
have a chance to be selected and the probability to select an individual
is proportional to its position.

In order to assure diversity in the population we also use a metric
for the number of different conditions there are in the antecedent and
consequent of each rule. The individuals with a higher value in this
metric will be structurally the most different and they will be more
probably elected. In the new population we also assure that there are
no repeated individuals, in order to avoid the problem of premature
convergence.

7. Experimental Results

In this section we describe the developed implementation of different
knowledge discovery algorithms and the specific software for applying
them in the problem area of ASWEs improvement. We will also de-
scribe the tests that were carried out and compare the results obtained
through the execution of different algorithms.

7.1. Implementation

In order to facilitate the realization of the full process of discovery
of prediction rules we have developed a specific graphical tool named
EPRules (Education Prediction Rules) developed in Java and intended
to be used directly by the teacher or the course developer. So, this tool
(Figure 9) is much easier to use (for a non-expert data-mining person)
than other generic tools such as DBMiner (Klösgen and Zytkow, 2002)
and Weka (Witten and Frank, 2000). And as it is a special-purpose tool,
it uses specific domain knowledge, and that’s why it is more powerful
for discovering knowledge than other (general-purpose) tools.

Modified
AHA!

Courseware Author

BD

log
files

model
files

test
files

EPRules

Data Input Data View
Prediction

Rule
Discovery

Knowledge
View

Figure 9. EPRules tool

Main.tex; 30/08/2004; 17:41; p.29

30 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

The main components of the EPRule tool interface (Figure 10) are:

Data input. It allows either to open a database with course usage data
or to create a new one and to add new students usage information
and preprocess it. To create a new database or to add data, the
course usage files must be selected (students’ log files) that will
be preprocessed and integrated into a relational database. The
algorithm parameters to transform the time-variable can also be
selected and configured. (This consists of transforming continuous
attributes into discrete attributes). We need to transform the at-
tribute time, assigning it three values: HIGH, MEDIUM and LOW.
(Figure 10).

Data view. It allows to visualize students’ usage data and to carry out
some basic statistics (maximum, minimum, average, etc.). These
data are about the access times, correct answers and knowledge
levels obtained by students for the different web pages (activities
and contents) that make up the course. One can select either to
visualize all students’ data or a specific student’s data, or just
about a particular theme of the course or about a specific concept
of the theme, or the visibility and difficulty level of a particular
theme (high, normal, low), or a type of particular information
(time, level or correct answers).

Figure 10. EPRules tool

Main.tex; 30/08/2004; 17:41; p.30

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 31

Prediction rule discovery. This is the most important part of the
tool because this is where the different algorithms for rule discovery
are applied. It allows: (a) to select the rule discovery algorithms:
ID3 (decision trees constructing algorithm) (Quilan, 1987), Apri-
ori (association rule mining algorithm) (Agrawal et al., 1993),
Prism (covering algorithms) (Cendrowska, 1987) and GBGP; (b)
to choose the specific execution parameters of each algorithm,
(c) to select the subjective restrictions that rules should match
(Figure 11), i. e. just one chapter or concept, a single student, a
determined knowledge level, score or time, and (d) to choose the
objective evaluation function, so that the discovered rules are really
useful to the teacher.

Knowledge view. It allows to visualize the discovered prediction rules,
both antecedent and consequent conditions of the rules and the
values for each evaluation measure the rules have (confidence,
support, interest, gini, laplace, etc., see Appendix A). It appears
automatically after finishing the algorithm execution. In a prede-
termined way, the rules appear ordered from the first discovered
one to the last one, but they can be rearranged taking into account
a condition or the value of any measure by simply clicking the
desired column.

Figure 11. Restrictions windows in EPRules tool

Main.tex; 30/08/2004; 17:41; p.31

32 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

The classic algorithms for knowledge discovery (ID3, Prism and
Apriori) have been implemented in Java. We have chosen these al-
gorithms since they are the most representative methods in data min-
ing (Witten and Frank, 2000) and previously other authors have pro-
posed and used them in comparison tests with a new proposed algo-
rithm (Freitas, 2002), (Hipp et al., 2000).

We had to adapt the algorithms to the specific discovery of predic-
tion rules. To do this, we had to modify the association and classifi-
cation algorithms. The conversion from association rules algorithm to
prediction rules algorithm is trivial, since it is only necessary to force
rule consequents to have a single condition. In the case of converting
classification rules algorithms into prediction rules algorithms the at-
tribute of rule consequent or class can’t be categorical, but rather it
can be any normal condition (an attribute value pair). And also, if we
want to extract rules with N different attributes, we have to execute
the classification rules algorithm N times, using in each case a different
attribute as consequent condition class.

We have only modified these algorithms to obtain rules with the
same format of the prediction rules generated by our GBGP algorithm.
Our objective was to test the quality (using three objectives measures)
of the rules obtained by a GBGP in relation to classic algorithms
without modifications.

The GBGP algorithms (aggregation functions or based on Pareto
Front) have also been implemented in Java using Jclec, a Java Class Li-
brary for Evolutionary Computation (Ventura et al., 2002). The GBGP
implementation in the Jclec library codes syntactic trees as vectors of
ordered integers that represent the tree in a pre-order way. In order to
evaluate the individuals it is necessary to transform the list of integers
in several SQL (Structured Query Language) queries (Sarawagi et al.,
1998) in order to determine the values of the evaluation measures used
in each case.

7.2. Description of the experiments

We have used the usage data of 50 users of a LINUX course. We have
carried out two types of tests to compare the results of each of the
implemented knowledge discovery algorithms. The first one is used
to compare the number of discovered rules and the second one is to
compare the quality of these rules.

We have also performed three more tests on populations of different
size. More precisely we have used (Figure 8): all available data, only
frequent data (those data with a relative frequency greater than 0.5)

Main.tex; 30/08/2004; 17:41; p.32

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 33

and only range data (those data with a relative frequency greater than
0.2 and lower than 0.9).

In the case of evolutionary algorithms, we have repeated the execu-
tion 10 times, using the parameters shown in Table V.

Table V. Evolutionary Algorithm Parameters

INITIALIZATION STAGE

Size of Population 50, 100 and 200 individuals

Initialization method Ramp based initialization

Minimum number of productions 9

Maximum number of productions 18

REPRODUCTION STAGE

Selection method Rank based selection

Crossover Operator Selective crossover

Probability of success 0.8

< antecedent > roulette value 1

< consequent > roulette value 1

< condition > roulette value 4

< attribute > roulette value 2

< value > roulette value 2

Mutation Operator Selective mutation

Probability of success 0.2

< antecedent > roulette value 1

< consequent > roulette value 1

< condition > roulette value 1

< attribute > roulette value 1

< value > roulette value 1

STOP STAGE

Maximum number of generations 50

— In order to compare classic algorithms versus evolutionary al-
gorithms in similar conditions (without advantage in any of them), we
have used for all algorithms: the same form of rule (prediction rule), the
same initial data (group of initial elements), the same initial restrictions
(size of rule, etc.), and we have used typical values in parameters for
each algorithms which need them (minimal support and confidence,
number of evolutions, etc.) —

Main.tex; 30/08/2004; 17:41; p.33

34 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

7.3. Comparison of algorithms’ performance

Using EPRules we have compared the number of discovered rules and
the percentage of accurate, interesting and comprehensible rules, ob-
tained through the different implemented algorithms. We have done
two comparisons: classic algorithms (ID3, Prism and Apriori) versus an
average value of evolutionary algorithms (EA-GBGP), and the previous
evolutionary algorithms among them (Liu, Freitas, Araujo, MOGA,
NSGA).

Figure 12. Number of Discovered Rules

Number of Discovered Rules. Figure 12 shows the total number
of rules discovered with classic versus evolutionary algorithms and
different versions of GBGP. As we can see in Figure 12 the huge
number of rules discovered by classic algorithms isn’t useful in
the case of using all data, especially with the Apriori algorithm.
This effect is attenuated by decreasing the size of used data (range
and frequents data). On the right-hand side, we see that the algo-
rithm that discovers the lowest number of rules is NSGA, followed
by MOGA. (Note the scale difference between the left and right
diagram.)

Percentage of Accurate Rules. Figure 13 shows the percentage of
accurate rules (rules with a value of certainty factor greater than
0.7) discovered with classic versus evolutionary algorithms and
different versions of GBGP.

Figure 13. Percentage of Accurate Rules

Main.tex; 30/08/2004; 17:41; p.34

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 35

Consulting the information of Figure 13 we can see that the Apri-
ori algorithm discovers very accurate rules. It is also important
to point out that algorithms based on Pareto Front (MOGA and
NSGA) discover very accurate rules too.

Percentage of Interesting Rules. Figure 14 shows the percentage
of interesting rules (rules with a value of interestingness greater
than 0.5) discovered with classic versus evolutionary algorithms
and different versions of GBGP.

Figure 14. Percentage of Interesting Rules

In Figure 14 it is shown that evolutionary algorithms discover
more interesting rules than classic algorithms. The best results
are again obtained with algorithms based on Pareto Front and
Araujo’s Aggregation Function (this is because Araujo’s contains
a component related to interest).

Percentage of Comprehensible Rules. Figure 15 shows the per-
centage of comprehensible rules (rules with a value of simplic-
ity greater than 0.5) discovered with classic versus evolutionary
algorithms and different versions of GBGP.

Figure 15. Percentage of Comprehensible Rules

Analyzing the results in Figure 15 we can see that evolutionary
algorithms discover rules that are more comprehensible, especially,
algorithms based on Pareto Front and Liu and Freitas Aggregation

Main.tex; 30/08/2004; 17:41; p.35

36 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

Function (this is due to the fact that Liu and Freitas’ contain a
component related to simplicity).

Finally we are going to summarize the main results obtained from
the previous comparisons. In general classic algorithms, and mainly the
Apriori’s, discover very accurate rules, but they fail to obtain short rules
with high interestingness. Also, in the case of using a lot of data (all
available data), they generate a number of rules so huge that it makes
them impossible to be used later. In general evolutionary algorithms
produce a smaller number of rules than classic algorithms and also,
the percentage of comprehensible and interesting rules is significantly
higher. Among the approaches based on aggregation functions, Liu and
Freitas are centered fundamentally on optimizing the accuracy and the
compressibility of the rules, and Alves on the interestingness of the
rules. However the use of algorithms based on the concept of Pareto
Front (MOGA and NSGA) can simultaneously optimize the three ob-
jectives, discovering the biggest percentage of exact, comprehensible
and interesting rules.

— A final comment about the scalability of algorithms in terms of
how fast is the rule discovery. Classic algorithms are fast when the size
of data is small (frequent data) but they are extremely slow when the
size of data grows (range data and all available data). On the contrary,
evolutionary algorithms are more independent from the size of data,
and their speed generating rules is less variable than classic algorithms.
—

7.4. Description of Discovered Knowledge

— The author of the course has a fundamental role in this form of
rule mining, because he can guide the search by setting subjective
restrictions 11 using his own knowledge and experience in education.
That is, using all available data, only frequent data or range data,
using data about one specific chapter or full course, using data about
all students or only students with an EXPERT or BEGINNER final
knowledge level, using only data about times, levels and successes to
compose the rules’ antecedent or consequent, etc. —

It is important to mention that the rule comprehensibility and in-
terestingness are subjective concepts, difficult to quantify effectively.
Due to this, we have used constraint-based mining (Han et al., 1999),
in which the user provides constraints that guide the search. We use
three types of constraints:

1. Data constraints. The teacher can specify the relevant data set to
the mining task.

Main.tex; 30/08/2004; 17:41; p.36

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 37

2. Rule constraints. The teacher can select specific constraints on the
rules to be mined.

3. Interestingness constraints. The teacher can set what ranges of a
measure are interesting for him.

As we have commented before, our objective is to show a group of
useful rules to the teacher so that he can take decisions about how
to improve the course. From a semantic point of view, the pattern of
discovered rules is:

IF Level|Time|Success AND ... THEN Level|Time|Success
Where :
Level,Time and Success: are level, time and sucess conditions.

The discovered rules show different types of relationships depending
on what the attributes in the rule consequent are:

• Time. It shows which attributes (attributes in the rule antecedent)
have an influence on the time (attribute of the rule consequent).

• Level. It shows which attributes (attributes in the rule antecedent)
have an influence on the level (attribute of the rule consequent).

• Success. It shows which attributes (attributes in the rule an-
tecedent) have an influence in the success (attribute of the rule
consequent).

These relationships can make reference to chapters, to concepts or to
concepts’ scenarios of web-based adaptive courses. Using these discov-
ered relations the teacher can make decisions about what modifications
in the course are the most appropriate to increase the relationship (if
he considers it to be desirable) or on the contrary to eliminate the
relationship (if he considers it not to be desirable) by changing or
modifying the contents, the structure or the adaptation of the course.

In general, we can discover tree types of rules depending on elements
referred in the rule (chapters, concepts or scenarios of concepts):

Rules about chapters. They show relationships between different chap-
ters of the same course. They refer to knowledge levels obtained in
initial and final tests). The pattern of this type of discovered rules
is:

IF ChapterLevel AND ... THEN ChapterLevel
Where :
ChapterLevel: are conditions about tests levels.

Main.tex; 30/08/2004; 17:41; p.37

38 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

Using this information, the teacher can make decisions such as
changing the sequence of chapters in the course, or joining them
to form one only chapter if he wants to increase the relation, or on
the other hand to put them further apart in the course if he wants
to decrease the relation.

Rules about concepts. They show relationships between different
concepts of the same or different chapter. They refer to knowledge
levels obtained in activities. The pattern of this type of discovered
rules is:

IF ConceptLevel AND ... THEN ConceptLevel
Where :
ConceptLevel: are conditions about activities levels.

Using this information, the teacher can make decisions such as to
put activities in the same chapter (if they are in different chapters),
to put them in the same difficulty level (if they have different
difficulty levels), to put them sequentially in the chapter, or on
the contrary to put them further apart within the chapter or in
the course.

Rules about scenarios of concepts. They show relationships between
scenarios of type exposition and/or activity. They refer to times,
successes and levels obtained in exposition content pages and eval-
uation activities of concepts. The pattern of this type of discovered
rules is:

IF ScenarioLevel|ScenarioTime|ScenarioSuccess AND ...
THEN ScenarioLevel|ScenarioTime|ScenarioSuccess

Where :
ScenarioLevel,ScenarioTime,ScenarioSuccess:
are conditions about scenarios times, successes and levels.

Using this information, the teacher can make decisions such as to
delete pages because they are either duplicate, or badly phrased
or they are incorrect; to change the difficulty level of the referred
concept, and to modify the content and/or answers of questions
since they are duplicate, badly phrased or incorrect, or to change
the difficulty level of the referred concept.

As we can see, these rules can be used to improve adaptive web-based
courses, although it could be used in other web-based systems and not
only in the adaptive ones. But our aim is to improve courses with

Main.tex; 30/08/2004; 17:41; p.38

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 39

adaptive functionalities like personalization, using different difficulty
levels.

— These results would easily generalize to other courseware apart
from AHA!(De Bra et. al., 2003), and EPRules tool (Romero et al.,
2002) can be used only carrying out the following:

1. Adaptation of the usage information. The typical log informa-
tion (Heift and Nicholson, 2000) stored by web-based system is only
about times in accessed pages. In web-based eduction (Brusilovsky,
2001), students are evaluated using usually quiz and test, and ob-
tained scores are stored. Finally, some adaptive applications (De
Bra et. al., 2003) use these scores to obtain different knowledge
levels. But if not, knowledge levels can be set manually using scores
as usually done in traditional education when teacher marks exams.
So, the usage information needed to do rule mining with EPRules
can easily be obtained and adapted to our specific data format.

2. Correspondence with the domain model. The domain model
in web-based educational system (Brusilovsky, 2001) is composed
of a set of small domain knowledge elements (DKE). DKE con-
cepts can be named differently in different systems: concepts, items,
topics, etc. and can represent bigger or smaller pieces of domain
knowledge. Concretely in our system there are concepts (with sev-
eral scenarios) grouped in chapters (Romero et al., 2002). So, in
order to do rule mining with EPRules, it is only necessary to do a
correspondence between the two domain models.

—
Next we are going to describe the meaning and the possible use of

several discovered rules using EPRules.

IF LEVEL.interface-network-high = EXPERT
THEN LEVEL.tcpip-telnet-medium = EXPERT
(Interest = 0.57, FactorCertainty = 0.75, Simplicity = 1)

This first rule shows that the knowledge levels obtained in the eval-
uation activities of different concepts have been simultaneously very
high (EXPERT). This indicates that the concepts (NETWORK with
a HIGH difficulty level in the INTERFACE chapter, and TELNET
with a MEDIUM difficulty level in the TCPIP chapter) are related
to each other. In this case, the teacher should check the presented
content for both concepts and try to find the reason for the relationship.
He should also decide if joining both concepts into a single concept,
putting both concepts in the same chapter, setting them to the same

Main.tex; 30/08/2004; 17:41; p.39

40 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

level of difficulty, correcting the rules that assign levels, or any other
modification would be helpful. In this specific rule example we have
considered that both concepts should have the same level of difficulty.
But if the levels refer to an initial or final test instead of activities, it
can be concluded that the chapters are related. Then the teacher can
join the chapters, or put them one after the other, or on the contrary,
create more distance between them. (We only indicate relationships but
do not automatically generate suggestions on how to deal with them.)

IF TIME.testf − administration− high(0) = HIGH

THEN SUCCESS.testf-administration-high(0)=NO
(Interest = 0.51, FactorCertainty = 0.79, Simplicity = 1)

This second rule shows the relationship between the time used for
reading a question (the question number 0 of the final test in HIGH
grade in the Administration chapter) and the success or failure ob-
tained in the answer of this question. This relationship indicates that
the question is not well enunciated or it has some kind of error, since
students not only need a HIGH time in reading it, but they then answer
it incorrectly. When the teacher discovers this type of relationship he
should correct it by modifying the enunciation of the question or by
replacing it by another question. In this concrete example rule we have
found the enunciation of the question corresponding to the ADMINIS-
TRATION concept to be confusing, and we had to replace it by another
(similar but clearer) question.

IF LEV EL.emulators− program− high = EXPERT

THEN SUCCESS.emulators-program-high(1)= NO
(Interest = 0.69, FactorCertainty = 0.73, Simplicity = 1)

This third rule shows the relationship between the knowledge level
obtained by students in the activity for evaluating a concept (the
concept EMULATORS that has a HIGH level of difficulty in the PRO-
GRAMS chapter) and the success or failure in answering a certain
question of this activity. This relationship indicates that if a question is
answered incorrectly by a large number of EXPERT level students then
the question may not be well enunciated. In this specific example rule
we found question 1 about the concept EMULATORS to be confusing
(in the enunciation of the question) and we have rewritten it to solve
the problem.

Main.tex; 30/08/2004; 17:41; p.40

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 41

8. Conclusions

In this article we have introduced a methodology to improve Adaptive
Systems for Web-Based Education. This methodology uses evolution-
ary algorithms as a data mining method for discovering interesting
relationships in students’ usage data. After we have analyzed the dif-
ferent existing methods (Tan et al., 2002) (Lavrac et al., 1999) (Yao
and Zhong, 1999) for evaluating the quality of the rules obtained by
knowledge discovery algorithms, we have determined the necessity of
using multi-objective algorithms instead of classic algorithms (mono-
objective algorithms). We have proposed the use of evolutionary ap-
proaches based on aggregation functions and Pareto Front. The com-
parison of algorithms with respect to the number of obtained rules
and the percentage of interesting, accurate and comprehensible rules,
shows that the algorithms based on Pareto Front (MOGA and espe-
cially NSGA) are superior compared to the other proposed algorithms,
that use one only evaluation measure or a composition of several mea-
sures. With regard to the utility of the discovered rules to help in
making decisions about possible modifications that can be carried out
in ASWEs, we have described the different types of obtained rules, the
utility of each type for the improvement of the course and and we have
given specific examples of discovered rules obtained in the Linux course
developed with AHA!. Finally, we have developed a specific tool in order
to facilitate the realization of the full process of knowledge discovery
by a non expert person in data mining. This tool allows to carry out
the pre-processing of students’ usage data, to place restrictions on the
types of relationship we want to discover, as well as the application of
the data mining algorithms for the rule extraction and the visualization
of these rules.

The main conclusions we have obtained after developing the current
work are the following:

1. We have shown that the use of data mining techniques (in our
case prediction rule mining) on the usage information generated
by ASWEs, allows to discover useful knowledge to improve the
systems. This knowledge in the form of prediction rules can be
used by the teacher to make decisions about how to modify the
course to improve system performance.

2. We have proposed a methodology to improve ASWEs. But this
methodology can be applied to other types of web-based systems
because it is domain independent. The only difference is the type
of usage information of each particular system.

Main.tex; 30/08/2004; 17:41; p.41

42 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

3. We have developed our own ASWE using AHA! and a specific web
usage mining tool in order to implement the proposed methodology
completely. In this way, a teacher can easily apply our methodology.

4. We have shown that evolutionary algorithms, and more specifically
grammar based genetic programming algorithms, are very suitable
for rule discovery in ASWE. This is not only due to the abil-
ity to obtain more interesting and comprehensible rules but also
to its flexible capacity to represent the individuals. The teacher
can change the individuals’ format by only modifying the rule
codification.

5. We have shown that the use of an evolutionary multi-objective
approach can improve the obtained results. Concretely, the NSGA
approach obtains a smaller number of rules with greater interest,
accuracy and simplicity than the other algorithms used.

6. We have shown that the discovered rules over the usage data of a
Linux course using specific teacher restrictions in the rules, are in-
teresting, coherent in most of the cases, and can be used to improve
questions, concepts, etc. of the course.

As a current line of research we are beginning to work on the search
for new measures related to the rules’ subjective interest using profes-
sionals in education. Thus, they have to provide an interest value for
each of the discovered rules. The teachers will have to decide which are
the most interesting rules, in an interactive way, during the process of
rule discovery. In this same research line, there are some references
to the evolutionary hot spots miner (Williams, 1999) in which the
individuals are directly evaluated by an expert in each cycle of the
algorithm. Perhaps this method may not be applicable to our problem
due to the large number of rules that can be obtained in each evolution.
However, a first approach with a small size of population may be viable
and could show information about measures that model in an effective
way these user preferences in the discovered rules.

Appendix

A. Rule Evaluation Measures
At present there are a lot of rule evaluation measures (Tan et al.,

2002) (Lavrac et al., 1999) that come from different areas such as ma-
chine learning, data mining, statistics, classification, etc. But almost all
of them can be obtained from the contingency table. The contingency

Main.tex; 30/08/2004; 17:41; p.42

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 43

table (Yao and Zhong, 1999) is the generalization of the confusion ma-
trix that is used for the rule evaluation in classification problems. The
contingency table of the generic rule A → C, where A is the antecedent
of the rule, and C is the consequence of the rule, is shown in Table VI.

Table VI. Contingency Table

A ¬A

C n(AC) n(¬AC) n(C)

¬C n(A ¬C) n(¬A¬C) n(¬C)

n(A) n(A) N

A: instances that match the rule antecedent affirmation.

¬A : instances that matches the rule antecedent negation.

C: instances that match the rule consequent affirmation. (¬C is similar
but in negation).

AC: intersection of A and C. (¬AC,¬A¬C and A¬C are similar).

n(A): cardinality of A. Number of instances of A. (n(C), n(¬A) and
n(¬C) are similar).

N: the total number of data instances.

We have also used the following probabilities:

p(A): relative frequency of A, obtained by p(A) = n(A)
N (p(C), p(¬A)

and p(¬C) are similar).

p(AC): relative frequency of the intersection of A and C, obtained by
p(AC) = n(AC)

N (p(¬AC), p(¬A¬C) and p(A¬C are similar).

p(A/C): relative frequency of A conditioned by C, obtained by p(A/C) =
p(AC)
p(C) (it is similar to p(¬A/C), p(¬A/¬C) and p(A/¬C).

Several of the most used rule evaluation measures (Tan et al., 2002)
(Lavrac et al., 1999) are shown in Table VII:

Main.tex; 30/08/2004; 17:41; p.43

44 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

Table VII. Rule Evaluation Measures.

Name Expression

Support Sup(A → C) = p(CA) = n(CA)
N

Confidence Conf(A → C) = p(C/A) = p(CA)
p(A)

Laplace Lap(A → C) = Sup(A→C)+1
Sup(A)+2

Conviction Conv(A → C) = p(A)p(¬C)
p(A¬C)

Interest I(A → C) = p(CA)
p(C)p(A)

P-S Interestingness RI(A → C) = p(CA)− p(C) ∗ p(A)

T-K Interestingness IS(A → C) =

√
I(A → C) ∗ p(CA)

N

Klsgen K(A → C) = p(A)α ∗ (P (C/A)− p(C))

Leverage Lev(A → C) = p(C/A)− (p(A) ∗ p(C))

Quinlan Q(A → C) = n(CA)−1/2
n(A)

Chi-squared χ2(A → C) = N(n(AC)∗n(¬A¬C)−n(A¬C)∗n(¬AC))2

n(A)∗(¬A)∗n(C)∗n(¬C)

Correlation coefficient ρ(A → C) = n(AC)∗n(¬A¬C)−n(¬AC)∗n(A¬C)√
n(A)∗(¬A)∗n(C)∗n(¬C)

Predictive Association λ(A → C) =

∑
j

maxkn(Ck,Aj)−maxkn(Ck)

N−maxk∗n(Ck)

Entropy H(A → C) = −∑
j

∑
l
p(AkBj ∗ log2p(AkBj))

Certainty Factor CF (A → C) = max(P (C/A)−P (C)
1−p(C)

, P (A/C)−P (A)
1−p(A)

)

Gini Gini(A → C) = p(A) ∗ P (C
A

)2 + p(¬C
A

)2 + p(¬A)∗
p(C/¬A)2 + p(¬C/¬A)2 − p(C)2 − p(¬C)2

Gain Function Gain(A → C) = p(AC)−Θ ∗ p(A)

J-measure J(A → C) = p(C) ∗ (p(A/C) ∗ log2(
p(A/C)

p(A)
)+

(1− p(A/C)) ∗ log2(
1−p(A/C)
1−p(A)

))

Divergence H(A → C) = p(A) ∗ (p(CA)
p(A)

∗ log2(
p(CA)/p(A)

p(C)
)+

p(¬CA)
p(A)

∗ log2(
p(¬CA)/p(A))

p(¬C)
))

Negative Reliability NegRel(A → C) = p(¬C/¬A)

Sensitivity Sens(A → C) = p(A/C)

Specificity Spec(A → C) = p(¬A/¬C)

Coverage Cov(A → C) = p(A)

Novelty Nov(A → C) = p(CA)− p(C) ∗ p(A)

Satisfaction Sat(A → C) = p(¬C)−p(¬C/A)
p(¬C)

Informativity Inf(A → C) = −log2(p(C/A))

Relative Accuracy RAcc(A → C) = p(C/A)− p(C)

Weighted RAcc WRAcc(A → C) = p(A) ∗ (p(C/A)− p(C))

Necessity N(A → C) = p(¬A/C)
p(¬A/¬C)

Characteristic Interest IC(A → C) = 1−N(A → C) ∗ p(C)

Significance Sig(A → C) = P (C/A) ∗ log2(I(A → C))

Relative Risk R(A → C) = p(C/A)
p(C/¬A)

Simplicity Simp(A → C) = (1− AntecedentSize
MaximumSize

)

Main.tex; 30/08/2004; 17:41; p.44

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 45

Acknowledgements

The authors* gratefully acknowledge the financial support provided by
the Spanish Department of Research of the Ministry of Science and
Technology under TIC2002-04036-C05-02 Projects.

References

Agrawal, R. Imielinski, T. Swami, A.: 1993, Mining association rules between sets
of items in large databases. In: Proc. of the 1993 ACM SIGMOD International
Conference on Management of Data. Washington, D.C., pp.207–216.

Araujo, D.L.A. Lopes, H.S. Freitas, A.A.: 1999, A Parallel Genetic Algorithm
for Rule Discovery in Large Databases. In: Proc. Conf. IEEE Systems and
Cybernetics. Tokyo, pp.940–945.

Arruabarrena, R. Prez, T.A. Lpez-Cuadrado, J. Gutirrez, J.: 2002, On Evalu-
ating Adaptive Systems for Education. In: Second Conf. AH2002. Adaptive
Hypermedia and Adaptive Web-based Systems. Nicosia, Cyprus, pp.363–367.

Askira-Gelman, I.: 1998, Knowledge Discovery: Comprehensibility of the Results.
In: Hawaii Int. Conf. on System Sciences. Kohala Coast, HI, pp.247–255.

Bayardo, R. J. Agrawal, R.: 1999, Mining the most interesting rules. In: Fifth Conf.
ACM on Knowledge Discovery and Data Mining SIGKDD ,San Diego, CA, USA,
pp.145–154.

Bojarczuk, C.C. Lopes, H.S. Freitas, A.A.: 2001, Constrained-syntax genetic pro-
gramming for knowledge discovery in medical databases. In: 10th Int. Symposium
on System Modeling ,Zakopane, Poland.

Cendrowska, J.: 1987, PRISM: an algorithm for inducing modular rules. Journal of
Man-Machine Studies 27, 349–370.

Delgado, M. Snchez, D. Martn-Bautista, M.J. Vila, M.A.: 2001, Mining Association
rules with improved semantics in medical databases. Artificial Intelligence in
Medicine 21, 241–245.

Dhar, V. Chou, D. Provost, F.: 2000, Discovering Interesting Patterns for Investment
Decision Making with GLOWER. Data Mining and Knowledge Discovery 4,
251–280.

Dougherty, J. Kohavi, M. Sahami, M.: 1995, Supervised and unsupervised discretiza-
tion of continuous features. In: Int. Conf. Machine Learning Tahoe City, CA,
pp.194–202.

Minaei-Bidgoli, B. Punch III, W.F.: 2003, Using Genetic Algorithms for Data
Mining Optimization in an Educational Web-based System.. In: Genetic and
Evolutionary Computation Conference. Chicago, Illinois, USA, pp.2252–2263.

Brusilovsky, P.:1998, Adaptive Educational Systems on the World-Wide-Web: A
Review of Available Technologies. In: Int. Conf. on Intelligent Tutoring Systems,
San Antonio, TX.

Brusilovsky, P.: 2001, Adaptive Educational Hypermedia. In: Proc. of Tenth Int.
PEG Conference, Tampere, Finland, pp. 8–12.

Carro, R.M. Pulido, E. Rodriguez, P.: 1999, Desinging Adaptive Web-based Courses
with TANGOW. In: Conf. Computers in Education, Chiba, Japan, pp.697-704.

Coello, C.A Veldhuizen, D.A. Lamount, G.B.: 2002, Evolutionary Algorithms for
Solving Multi-Objective Problems.. Kluwer.

Main.tex; 30/08/2004; 17:41; p.45

46 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

Darwin, C.: 1859, On the Origin of Species by Means of Natural Selection. John
Murray.

Deb, K.: 2001, Multi-Objetive Optimization Using Evolutionary Algorithms. Wiley.
De Bra, P. Wu, H. Aerst, A. Houben, G.: 2000, Adaptation Control in Adaptive

Hypermedia Systems. In: Proc. of Int. Conference on Adaptive Hypermedia and
Adaptive Web-based Systems, Trento, Italy, pp. 250-259.

De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, T., Smits,
D., Stash, N.: 2003, AHA! The Adaptive Hypermedia Architecture. In: Proc. of
the ACM Hypertext Conference, Nottingham, UK, pp. 81–84.

De Castro, C. and Romero, C.: 2002, HAMTUTOR. Autor tool to develop adaptive
multimedia courses. In: World Conf. on E-Learning in Corporate, Government,
Healthcare, Higher Education, Montreal, Canada, pp. 2575–2576

Dubois, P.: 2002, Edicin Especial MySQL. Prentice Hall.
Fonseca, C.M. Fleming, P.J.: 1993, Genetic algorithms for multiobjective optimiza-

tion: formulation, discussion and generalization. In: Proc. 5rd Int. Conf. on
Genetic Algorithms, San Mateo, California, pp. 416–423.

Freitas, A. A.: 1997 A Genetic Programming Framework for Two Data Mining Tasks:
Classification and Generalized Rule Induction. In: Conf. Genetic Programming,
CA, USA, pp. 96–101.

Freitas, A. A.: 2000, Understanding the Crucial Differences Between Classification
and Discovery of Association Rules. ACM SIGKDD Explorations, 2(1), 65–69.

Freitas, A. A.: 2001, A Survey of Evolutionary Algorithms for Data Mining and
Knowledge Discovery. In: Ghosh, A.; Tsutsui, S. (Eds.) Advances in Evolutionary
Computation, Springer-Verlag, pp.819–845

Freitas, A. A.: 2002, Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer-Verlag.

Gilbert, R.G. Goodacre, R. Shann, B. Kell, D.B. Taylor, J. Rowland, J.J.: 1998,
Genetic Programming-based variable selection for high-dimensional data. In:
Proc. 3rd Conf. Genetic Programming, San Francisco, CA, USA, pp.109–115.

Ghosh, A. Nath B.: 2004, Multi-objective rule mining using genetic algorithms.
Information Sciences, 163, 123–133.

Han, J. Lakshamanan, L. Raymond, T.Ng.: 1999, Constraint-Based, Multidimen-
sional Data Mining. IEEE Computer, 32 (8), 46–50.

Heift, T. Nicholson, D.: 2000, Enhanced Server Logs for Intelligent, Adaptive Web-
based Systems. Technical Report. Institute for Semantic Information Processing.
Universitt Osmabrk.

Herin, D. Sala, M. Pompidor, P.: 2002, Evaluating and Revising Courses from Web
Resources Educational. In: Int. Conf. on Intelligent Tutoring Systems, Biarritz,
France, San Sebastian, Spain, pp. 208–218.

Hipp, J. Gntzer, U. Nakhaeizadeh, G.: 2000, Mining Association Rules: Deriving a
Superior Algorithm by Analyzing Today’s Approaches. In: European Symposium
Data Mining and Knowledge Discovery, Lyon, France, pp. 13–16

Koza, J.R.: 1992, Genetic Programming: on the programming of computers by
means of natural selection. MIT Press.

Lavrac, N. Flach, P. Zupan B.: 1999, Rule Evaluation Measures: A Unifying View. In:
Int. Workshop on Inductive Logic Programming, Springer-Verlag, pp. 174–185.

Liu, B. Hsu, W. Chen, S. Ma, Y.: 2000, Analyzing the Subjective Interestingness of
Association Rules. IEEE Intelligent Systems, 15(5), 47–55.

Liu, J.J. Kwok, J.T.: 2000, An Extended Genetic Rule Induction Algorithm. In:
Proc. of the Congress on Evolutionary Computation, La Jolla, California, USA,
pp.458–463.

Main.tex; 30/08/2004; 17:41; p.46

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 47

Michalski, Z.: 1998, Genetic Algorithms + Data Structures = Evolution Program.
Springer..

Mitra, S. Pal S.K. Mitra, P.: 2001, Data Mining in Soft Computing Framework: A
Survey. IEEE Transaction on Neural Networks, 13(1), 3–14.

Noda, E. Freitas, A. Lopes, H.S.: 1999, Discovering interesting prediction rules
with a genetic algorithm. In: Proc. Congress on Evolutionary Computation,
Washington D.C., USA, pp.1322–1329.

Nordin, P. Banzhaf, W. Keller, R.E. Francone, F.D.: 1998, Genetic Programming:
An Introduction. Morgan Kaufmann.

Ortigosa, A. Carro, R.M.: 2002, Asistiendo el Proceso de Mejora Continua de Cursos
Adaptativos. In: III Congreso Int. de Interaccin Persona-Ordenador, Granada,
pp.246–250.

Pahl, C. Donnellan, D.: 2002, Data Mining Technology for the Evaluation of Web-
based Teaching and Learning Systems. In: Proc. Congress E-learning, Montreal,
Canada.

Piatesky-Shapiro, G Matheus, J.: 1994, The interestingness of deviations. In: AAAI
Workshop on Knowledge Discovery in Databases,Seattle, Washington, pp.25–36.

Pierrakos, D. Paliouras, G. Papatheodorou, C. Spyropoulos C.D.: 2003, Web Usage
Mining as a Tool for Personalization: A Survey. User Modeling and User-Adapted
Interaction., 12(4), 311–371.

Quilan, J.R.: 1987, Generating Production rules from decision trees. In. Proc. of
IJCAI, pp. 304–307.

Klösgen, W. Zytkow, J.M.: 2002, Handbook of Data Mining and Knowledge
Discovery. Oxford University Press.

Ratle, A. Sebag, M.: 2000, Genetic Programming and domain knowledge: beyond
the limitations of grammar guided machine discovery. In. Proc. of 6th Conf.
Parallel proglem solving for nature, Paris, France, pp.211–220.

Romero, C. De Bra, P. Ventura, S. De Castro, C.: 2002, Using Knowledge Level
with AHA! For Discovering Interesting Relationship. In: Proc. of the AACE
ELearn’2002, Montreal, Canada, pp. 2721–2722.

Romero, C. Ventura, S. De Bra, P. De Castro, C.: 2002, Discovering Prediction
Rules in AHA! Courses. In: 9th Int. Conf. on User Modeling, Johnstown, PA,
USA, pp.25–34.

Ryu, T.W. Eick, C.F.: 1996, Discovering Commonalities of a set of Objects Usign
Genetic Programming. Proc. of Genetic Programming Conference.

Sarawagi, S. Thomas, S. Agrawal, R.: 1998, Integrating Association Rule Mining
with Relational Database Systems: Alternatives and Implications. In: Conf. on
Management of data, Seattle, Washington, pp.343–354.

Shortliffe, E. Buchanan, B.: 1975, A model of inexact reasoning in medicine.
Mathematical Biosciences, 23, 351–379.

Smythe, P. Goodman, R.M.: 1992, An Information Theory Approach to Rule
Induction from Databases. IEEE Knowledge and Data Engineering. 4(4),
301–316.

Silberschatz, A.: 1995. On Subjective Measures of Interestingness in Knowledge. In:
Proc. Knowledge Discovery and Data Mining, Montreal, Canada, pp. 275–281.

Silverstein, A. Brin, S. Motwani, R.: 1998, Beyond market baskets : Generalizing
association rules to dependence rules. Data Mining and Knowledge Discoverty.,
2, 29–68.

Spiliopoulou, M.: 2000, Web Usage Mining for Web Site Evaluation.. Communica-
cion of the ACM, 43(8) 127–134.

Main.tex; 30/08/2004; 17:41; p.47

48 CRISTÓBAL ROMERO, SEBASTIÁN VENTURA and PAUL DE BRA

Srinivas, N. Deb, K.: 1994, Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation, 2(3), 217–249.

Srivastava, J. Cooley, R. Deshpnade, M. Tan, P.: 2000, Web Usage Mining: Discovery
and Applications of Usage Pattern from Web Data. ACM SIGKDD, 1(2):12–23.

Tan, P. Kumar, V. Srivastava, J.: 2002, Selecting the right Interestingness measures
for association patterns. In: Proc. of the 8th Int. Conf. on Knowledge Discovery
and Data Mining, Edmonton, Canada, pp.32–41.

Tang, T. McCalla, G.: 2002, Student Modeling for a Web-based Learning Environ-
ment: a Data Mining Approach. In: Proc. Conf. on Artificial Intelligence AAAI,
Edmonton, Alberta, Canada pp.967–968.

Ventura, S. Ortiz, D. Hervz, C.: 2002, Jclec: Una biblioteca de clases java
para computacin evolutiva. In: I Congreso Espaol de Algoritmos Evolutivos y
Bioinspirados, Merida, pp.23–30.

Wang, F.: 2002, On Using Data-Mining Technology for Browsing Log File Anlisis
in Asynchronous Learning Environment. In: Conf. on Educational Multimedia,
Hypermedia and Telecomunications, Denver, Colorado, pp.2005–2006.

Whigham, P.A.: 1995, Gramatically-based Genetic Programing. In: Proc. of the
Workshop on Genetic Programming, California, pp.33–41.

Williams, G.J.: 1999, Evolutionary Hot Spots Data Mining. An Architecture for
Exploring for Interesting Discoveries. In: Conf. on Knowledfe Discovery and
Data Mining, Beijing, China, pp. 184–193.

Witten, I.H. Frank, E.: 2000, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann.

Wong, M.L. Leung, K.S.: 2000, Data Mining using Grammar Based Genetic
Programming and Applications. Kluwer.

Yao, Y. Zhong, N.: 1999, An Analysis of Quantitative Measures Associated with
Rules. In: Proc. of PAKDD’99, pp.479–488.

Yu, P. Own, C. Lin, L.: 2001, On Learning Behavior Analysis of Web Based
Interactive Environment. In: Proc. ICCEE, Oslo/Bergen Norway.

Zäıane, O.R. Luo, J.: 2001, Towards Evaluating Learners’ Behaviour in a Web-
Based Distance Learning Environment. In: Proc. IEEE Int. Conf. on Advanced
Learning Technologies, Madison, Wisconsin, pp.357–360.

Zäıane, O.R.: 2002, Building a Recommender Agent for e-Learning Systems. In:
Proc. Int. Conf. on Computers in Education, Auckland, New Zealand, pp.55–59.

Vitae
Dr. Cristóbal Romero is Assistant Professor in the Computer

Science Department of the Cordoba University (Spain). He received
his ph. d. in Computer Science from the University of Granada in 2003.
His research interests are in artificial intelligence in education.

Prof. dr. Sebastián Ventura is Professor in the Computer Science
Department of the Cordoba University (Spain). He received his ph. d. in
Sciences from the University of Cordoba in 1996. His research interests
are in evolutionary computation and web-based systems.

Prof. dr. Paul De Bra is Professor in the Computer Science De-
partment of the Eindhoven University of Technology (Netherlands). He
received his ph. d. in Computer Science from the University of Antwerp
in 1987. His research interests are in adaptive hypermedia systems and
web-based information systems.

Main.tex; 30/08/2004; 17:41; p.48

