
A Fully Generic Approach

for Realizing the Adaptive Web

Paul De Bra and David Smits

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

debra@win.tue.nl, d.smits@tue.nl

Abstract. It is time for Adaptive Web (server) extensions to grow up
and become generic. The GRAPPLE1 (EU FP7) project aimed at inte-
grating Learning Management Systems (LMS) with Adaptive Learning
Environments (ALE) in order to support life-long learning. But instead
of developing a dedicated Web-based ALE we developed an architecture
containing a fully generic adaptive Web server, a distributed User Mod-
eling Framework and a generic browser-based authoring environment for
Domain Models and Conceptual Adaptation Models. The GRAPPLE ar-
chitecture can be used for creating and serving any type of adaptive Web-
based application. It supports content-, link- and presentation (layout)
adaptation based (in any programmable way) on any desired user model
information. In this paper we concentrate on GALE [21], the adaptation
engine we renamed to the “Generic Adaptation Language and Engine”.
We describe the key elements that make GALE into a truly generic and
highly extensible Web-based adaptive delivery environment.

Keywords: adaptation engine, adaptation rules, generic architecture.

1 Introduction

Vannevar Bush is often said to be the inventor of hypertext because of his article
“As We May Think” [11]. (The term “hypertext” was not used by Bush and in-
troduced much later by Ted Nelson [19].) Bush actually did more in that article,
by envisioning that the user would build “trails of his interest through the maze
of materials available to him”. This type of user was called the “trailblazer”.
It is a first sign of personalization, aimed at facilitating revisiting information
(either by the same user or by someone else). Another form of personalization
was the addition of annotations: “he inserts a page of longhand analysis of his
own”. Adaptive hypermedia research, first summarized by Brusilovsky in 1996
[7] and updated in 2001 [8] aims at automating this trailblazing and annotat-
ing through link adaptation and content adaptation. Knutov et al [18] describe
(in 2009) many new adaptation techniques developed to date and provide a list
of challenges for creating a new generic adaptive hypermedia system, capable

1 GRAPPLE stands for Generic Responsive Adaptive Personalized Learning
Environment.

M. Bieliková et al. (Eds.): SOFSEM 2012, LNCS 7147, pp. 64–76, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Fully Generic Approach for Realizing the Adaptive Web 65

of dealing with ontologies, open corpus adaptation, group adaptation, informa-
tion retrieval and data mining, higher order adaptation, context awareness and
multimedia adaptation.

GALE [21] tackles some of Knutov’s challenges directly through implemented
functionality (that we will describe) and makes it possible to tackle more chal-
lenges by means of a highly extensible modular architecture. GALE builds on
the experience we gained in the past when developing and using AHA! [3, 4, 6],
the first general-purpose open source adaptive Web-server extension, used in
different institutes all over the world.

This paper is organized as follows: Section 2 presents some background on
adaptive Web-based systems, and positions GALE as a generic adaptive Web-
server extension. Section 3 describes the GALE architecture, stressing the mod-
ular construction of communicating components. It also describes how GALE
executes adaptation rules. Section 4 describes the adaptation language GAM,
a simple textual representation of adaptation models. Section 5 concludes and
points to needed and planned future work.

2 A Brief Overview of Adaptive Applications
and Platforms

It is impossible to give a complete overview of the introduction of adaptive
functionality in Web-based systems and applications. We will briefly mention
some influential developments.

The fields of intelligent tutoring systems and hypermedia came together when
the Web evolved to the point where it became feasible to add enough function-
ality to the Web server back-end. The award-winning ELM-ART2 adaptive Lisp
course [10] not only paved the way for later developments but also set a standard
for adaptive link annotations by employing a “traffic light metaphor” of using
green and red balls (and some intermediate colors like white and yellow) to indi-
cate the “status” of links to course topics or pages. This metaphor was inherited
by many later systems and can still be seen in some GALE applications as well.

When Brusilovsky created Interbook [9] he aimed at creating a platform that
could be used for many courses (instead of the single Lisp course offered by ELM-
ART). He used Microsoft Word as the authoring platform. An author would
essentially write a textbook in Word. Fragments (paragraphs or sections) of
text would be associated with some outcome concepts by means of a structured
comment, and concepts would be indicated as being a prerequisite for other
concepts, also by means of a comment. Converting a textbook (written in Word)
into an adaptive on-line course was reduced to little more than a press of a
button.

Adaptation is always based on information the system has about its user.
Therefore user modeling is a key component in every adaptive system. Typ-
ically user modeling is based on rules that “translate” user actions into user

2 ELM-ART stands for Episodic Learner Model, the Adaptive Remote Tutor.

66 P. De Bra and D. Smits

information. Reading a course page means that you learn about a concept. That
knowledge can be confirmed through a test. That knowledge is also used to check
whether you satisfy prerequisites for studying other concepts. Knowledge levels
of small concepts also “add up” to knowledge about chapters and whole courses.
This description may give the false impression that an adaptive system really
“knows” what goes on in the user’s mind, with absolute certainty. There is how-
ever an alternative approach to user modeling, using Bayesian networks. This
approach is taken by KBS-Hyperbook [16] for instance. User actions change the
“belief” of the system that the user has certain knowledge. It is easier to deal
with positive and negative “evidence” of the user’s knowledge (or interest or any
other type of information) in Bayesian networks than in systems that just use
(event-condition-action) rules to update knowledge levels.

Recent versions of AHA! (the Adaptive Hypermedia Architecture) [3, 6] allow
an author to define arbitrary adaptation rules (in fact user model update rules)
and can thus support any model or interpretation of the information stored about
users. Also, unlike Interbook’s use of Microsoft Word for authoring, applications
in AHA! are authored in HTML, and of course also delivered as HTML. This
means that authors familiar with creating HTML can give an AHA! application
any look and feel they desire. AHA! can for instance completely mimic the
behavior and presentation of Interbook [5]. In order to be able to manage the
complexity of having arbitrary adaptation rules and arbitrary presentation AHA!
had to separate the authoring of the adaptation from the authoring of the content
and presentation. Defining complex adaptation rules requires very different skills
from writing the content of a course. We will see this in GALE as well.

ELM-ART, Interbook and AHA! are examples of systems that support learn-
ing through adaptive information exploration. The user receives guidance
(through link annotation and in AHA! also through the conditional inclusion
of fragments) but can browse through a course text in any desired way. More
support for the process of navigation and the use of services (going beyond the
single step of accessing a page) can be found for instance in APeLS, designed by
Conlan and Wade et al [12].

Although adaptive applications in the field of elearning or “technology-
-enhanced learning” are the most common, there is also significant research
in other application areas. Personalized advertising is becoming big business.
This is highly visible in Google’s personalized ads, but also in recommendations
on shopping sites, like the “people who bought this. . . also bought. . . ” messages
on Amazon. Museums and other cultural institutes are offering adaptive per-
sonalized previews and guided tours or are studying this. The Dutch CATCH
(Continuous Access to Cultural Heritage) research program has spawned a lot of
research to improve access to cultural information. In one of its projects: CHIP3

(Cultural Heritage Information Presentation and Personalization) a personal-
ized art recommender was built for (and jointly with) the Rijksmuseum [22],
as well as personalized virtual and physical (mobile) guided tours [13]. Italy is
also strong in the adaptive access to information about culture and tourism, for

3 See http://www.chip-project.org/ for more information and demos.

A Fully Generic Approach for Realizing the Adaptive Web 67

instance through UbiquiTO, a multi-device adaptive guide for Torino [2] and
the work on Intelligent Inferfaces for Museum visitors from FBK in Trento [18].
The world of entertainment is following suit with personalized TV guides such
as iFanzy4 [1], a result of the ITEA Passepartout project.

The main difference between the mainstream adaptive educational applica-
tions and the others is the role of the author. Systems for culture, entertainment
and business are typically large special-purpose Web-based Information Systems
with an added personalization or adaptation component. There is also a body of
research towards making Adaptive Web-based Information Systems more generic
[16, 20]. The definition of the adaptation in Adaptive WIS is mostly automati-
cally generated from semantic structures in the databases. In elearning a human
author is involved in defining the adaptation at the “instance level”, specifying
in detail how which action of the learner leads to which change in the user model
and how the user model state influences the adaptation. But this is not only the
case in elearning. Adaptive (adventure) games for instance also require carefully
crafted adaptation rules. GALE attempts to offer a generic solution to authors
of adaptive websites. In the GRAPPLE project (EU FP7 STREP) the adapta-
tion language and the graphical authoring tools played an important role. The
GALE engine can be used to serve information where the adaptation rules are
generated from (semantic) database structures, but in this paper we concentrate
on manually authored applications.

3 The GALE Architecture

Figure 1 below shows the global architecture of GALE. A more elaborate de-
scription of GALE can be found in [21]. In this paper we can only present a brief
summary of GALE.

Because of lack of space we will concentrate on the processor stack (bottom
left of the figure) and the distributed way of executing adaptation rules (a collab-
oration between the adaptation engine, domain model and user model services.
The former is responsible for performing the actual adaptation and the latter
for performing user model updates.

3.1 GALE Processors and Modules

In GALE you can configure a set of processors that may operate on an out-
standing request. Each processor is only active when the request has reached
a state in which it can act upon it, and when finished it updates that state in
order to notify the next processor that it can start processing the request. The
actual adaptation functionality of GALE can thus be extended in arbitrary ways
by adding processors to the stack. Here we briefly explain how a typical (http)
request for a concept goes through the stack. We omit details like determining
a layout for the presentation and logging for later use with data mining tools.

4 See http://www.ifanzy.nl/.

68 P. De Bra and D. Smits

Fig. 1. The GALE architecture

1. When the top left part of the architecture has performed its duties of ensur-
ing that the user is identified and a session is created the first processor to
“touch” the request is the UpdateProcessor. It signals an EventManager that
the “access concept” event has occurred. The default EventAccessHandler
executes the event code of the requested concept, as defined in the applica-
tion’s “Domain Model” or DM. This part is concerned with updating the
user model and will be described later. The UpdateProcessor will wait for the
user model (UM) updates to be completed, so as to ensure that any further
processing of the event is based on the new user model state. (For instance,
when a learner requests a concept from a course, the knowledge update that
should follow from reading the page associated with the concept is already
performed before the page is retrieved, adapted and presented to the learner.
It is important for an adaptation rule designer to know this order of events.

2. After the UM updates have been performed the LoadProcessor will retrieve
the actual resource (file) associated with the concept. The name or url of
resource may be dependent on UM, which is why UM updates must come
first. The LoadProcessor retrieves the file (possibly by issuing an http re-
quest to a remote server) and creates an InputStream that can be used by
subsequent processors to load and process the data. File name extensions are
used to determine the mime type of the resource, and this may tell processors
whether they should handle the request or not. At this point GALE could be
extended with processors to handle all kinds of input formats, like images,

A Fully Generic Approach for Realizing the Adaptive Web 69

drawings, audio, video, etc. but by default GALE only provides processors
to deal with HTML and XML.

3. Although GALE can handle HTML it really works with XHTML. When
encountering HTML the HTMLProcessor uses the (open source) Tagsoup5

converter to convert the file to XHTML. It creates a new InputStream that
contains valid XHTML.

4. If the input is XML (also XHTML) the ParseProcessor converts the input
into an in-memory DOM tree, using the open source dom4j6 parser.

5. The XMLProcessor walks through the DOM tree in order to perform adap-
tation where needed. The modules that may be used to perform adaptation
to certain tags are loaded by the XMLProcessor. GALE can be configured
to associate different modules with different XML tags. The default modules
are targeted towards handling XHTML, but any module for handling any
kind of adaptation to elements associated with any tag can be added, thus
facilitating adaptation to very different types of XML documents, like Mu-
sicXML, SMIL, etc. Modules can change the tag name, attributes of tags
and the content of the XML elements. (We give some examples later.)

6. The SerializeProcessor converts the DOM tree back into the textual XML
format and presents that to the GaleServlet as an InputStream so that it
can be sent to the user’s browser (as an http response).

In GALE Modules are associated with XML tags in order to perform adaptation.
Because of space limitations we only explain a few modules here:

– The IfModule handles the <if> tag. It expects <if> to have an argument
“expr” that is a Boolean expression in GALE code (see Sect. 4.) It expects
one or two child elements: a <then> and optionally an <else> element.
The module replaces the <if> subtree by either the content of the <then>
subtree or the <else> subtree. The IfModule thus realizes what is known as
the adaptive inclusion of fragments technique [17].

– The AdaptLinkModule handles the<a> tag which is used just like the HTML
<a> tag, but referring to a concept, not a page or resource. The link adap-
tation consists of (optionally): adding an icon in front of the link anchor
(e.g. a colored ball to implement the “traffic light metaphor”), adding an
icon after the link anchor, and adding a “class” attribute to the <a> tag,
which in combination with a style sheet changes the presentation of the link.
The default stylesheet uses three classes: GOOD, NEUTRAL and BAD and
associates these with the colors blue, purple and black, just like AHA! did.
Unlike in AHA! the number and choice of classes, colors, icons and conditions
for using which class are all unlimited and easily configurable.

– The VariableModule replaces the <variable> element by a variable form the
user model or the result of an expression. The AttrVariableModule does the
same for an attribute in the parent tag. In XML the attributes of a tag
cannot contain XML tags, so using a <variable> tag inside an XML tag to

5 See ccil.org/∼cowan/XML/tagsoup/ for more information.
6 See dom4j.sourceforge.net for more information on dom4j.

70 P. De Bra and D. Smits

make an attribute adaptive is not allowed. To make the name of an image
in the HTML tag adaptive for instance you can write:

<attr-variable name=”src” expr=”. . . ”>

where the expression (not filled in here) results in the name for the image.

3.2 The Execution of GALE Adaptation Rules

As Fig. 1 shows GALE has an “internal” Event Bus through which different
components communicate with each other. There are two essential sources of
information for adaptive information delivery: the Domain Model (DM) that
describes the conceptual structure of an adaptive application and the User Model
(UM) that stores all the information the system can gather about its users. DM
and UM services in GALE are separate services that can (if desired) run on
different machines.

The DM of an application consists of concepts and relationships. Concepts
have properties, including a title and description but also names (urls) of re-
sources and conditions for selecting which resource. Concepts also have associ-
ated event code that is executed by the adaptation engine when a user accesses
the concept. To minimize communication the adaptation engine maintains a
cache of the DMs of the applications it serves.

The UM contains for each user some (arbitrary) personal information and for
each concept of each application the user has accessed it contains event code
and some attribute values. (The event code is stored only once but the attribute
values are stored for each user.) Since the event code may make use of DM
information the UM service has a cache of the DM. And since the adaptation
engine needs to frequently access UM information it has a cache of the UM data
of its (active) users.

Figure 2 shows how GALE handles UM updates caused by internal event code
and UM updates received from external sources, such as the GUMF user model
service that is part of the GRAPPLE framework.

When event code associated with a concept (access) causes a UM update (for
instance the access to a concept means that the user gains knowledge about the
concept) that update changes an attribute-value in the UMCache. The UMCache
wishes to synchronize this update with the UMService and sends a “setum”
message to UMService through the EventBus. The change to the attribute-value
may trigger event code associated with the attribute. This event code is executed
within the UMService and results in more UM updates. These updates must be
synchronized with the UM cache in the adaptation engine so the set of changes
os returned to the UMCache. When the UMCache sends out some updates it
always waits for “results” to come back, because the adaptation process must
work with the new UM state.

When an external UM service sends a UM update (as a “setum” message) this
may also cause additional updates, and an “updateum” going to the UMCache.
GALE can thus handle UM updates arriving at any time from any service.

A Fully Generic Approach for Realizing the Adaptive Web 71

Fig. 2. The process of handling UM updates

4 GAM: The GALE Adaptation Model (GALE Code)

Creating an adaptive application requires that an author or adaptation designer
defines adaptation rules. This process has been the Achilles heel of adaptive ap-
plication design from the start. In Interbook [9] and early AHA! versions [4] an
author would simply specify prerequisite and outcome relationships between con-
cepts and the system would automatically generate adaptation rules that resulted
in the adaptive behavior of the system. Authoring was easy, and flexibility was
non-existent. As more flexibility was introduced, for instance in AHA! version 3 [6]
a dilemma was born between simplifying authoring through graphical authoring
tools [3] and empowering the author through a rich adaptation language. In the
GRAPPLE project a graphical authoring environment was created [14] which al-
lowed for easy adaptation design using templates (pedagogical relationship types)
while empowering the author by making it possible to design arbitrarilymany and
complex new templates. In GRAPPLE it is thus possible to do little more than
use prerequisite and outcome relationships, and at the same time it is possible to
design the most complex adaptation you can imagine. Here we do not describe
the graphical tool but only the underlying GAM language that can also easily be
used by an author in a purely textual fashion. We introduce GAM by example (as
a complete definition with examples would be far too long).

A GAM definition can be for a single concept or a number of concepts, and
can be combined with (X)HTML content as well. Below is an example concept
definition7 for a concept http://gale.win.tue.nl/elearning.xhtml (that can of
course be referred to as elearning.xhtml by other concepts on the same server):

7 We omit some of the “escaping” of < and > symbols that is actually required by
the XML syntax.

72 P. De Bra and D. Smits

<?xml version=”1.0” encoding=”UTF-8”?>
<html xmlns=http://www.w3.org/1999/xhtml
xmlns:gale=”http://gale.tue.nl/adaptation”>
<head>
<meta name=”gale.dm” content=”
{ #[visited]:Integer ‘0‘ {
event ‘if (${#suitability} && ${#read} < 100)
#{#read, 100};
else if (!${#suitability} && ${#read} < 35)
#{#read, 35};‘}
#knowledge:Integer ¡ avg(new Object[]
{${<=(parent)#knowledge},${#read}}).intValue()‘
#[read]:Integer ‘0‘
#suitability:Boolean ‘true‘
event ‘#{#visited, ${#visited}+1};‘ } ” />
< /head>
<body>
<p>This page is a placeholder for the elearning
concept.</p>
< /body>
< /html>

The example code has the following semantics:

– #[visited]:Integer ‘0‘ means that this concept has a UM attribute called
“visited”; it is an integer and is initialized with the value 0. The brackets
[. . .] indicate that the value of this attribute is stored permanently.

– The code event ‘#{#visited, ${#visited}+1};‘ } means that when the con-
cept is accessed the value of the “visited” attribute in increased by 1.

– When the value of “visited” changes its event code is executed which updates
the “read” attribute.

– The attribute “read” is also an integer; it is also stored or persistent.
– The attribute “knowledge” is an integer which is not stored but calculated

from the “read” value and the list of “knowledge” values of the children of
the “elearning” concept.

– The attribute “suitability” is a Boolean, which is “true” by default. This too
is not stored but calculated when needed. If there were prerequisites for the
“elearning” concept there would be an expression that defines the condition
for the concept to become suitable.

Another concept can “inherit” this adaptation (GAM) code as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<html xmlns=http://www.w3.org/1999/xhtml
xmlns:gale=”http://gale.tue.nl/adaptation”>
<head>
<meta name=”gale.dm” content= {->(extends)

A Fully Generic Approach for Realizing the Adaptive Web 73

http://gale.win.tue.nl/elearning.xhtml}” />
< /head>
<body>
<p>This page uses the elearning template.</p>
< /body>
< /html>

When a whole application domain is stored in a single file the “meta” element
for the concepts/pages may look like:

<meta name=’gale.dm’ content=’redirect:course.gam’ />
and the file “course.gam” might have contents like:
welcome.xhtml {
->(extends)http://gale.win.tue.nl/elearning.xhtml
->(extends)layout.xhtml
< −(parent)gale.xhtml
< −(parent)gat.xhtml
}
gale.xhtml {
->(extends)welcome.xhtml
->(parent)welcome.xhtml
}
gat.xhtml {
-> (extends)welcome.xhtml
->(parent)welcome.xhtml
}
layout.xhtml {
#layout:String ‘
<struct cols=”250px;*”>
<view name=”static-tree-view” />
<struct rows=”60px;*;40px”>
<view name=”file-view” file=”gale:/header.xhtml” />
<content />
<p><hr />Next suggested concept to study:
<view name=”next-view” /></p>
< /struct>
< /struct> ‘
}

Again we do not explain this code but just illustrate that code can be shared
between different concepts/pages, and can be placed in individual files or com-
bined into a single GAM file. An adaptation designer can create the file “elearn-
ing.xhtml” and an application (or course) designer can use the adaptation defines
by the designer by simply “extending” that definition and by defining relation-
ships (like “parent”) between concepts.

74 P. De Bra and D. Smits

When authoring through GRAPPLE’s graphical tool similar templates are
used, but instead of “extending” concepts to inherit attribute definitions and
adaptation rules templates are “instantiated” (through copying). In terms of
adaptive functionality this makes no difference.

The event code in GAM is essentially arbitrary Java code, in which some
shorthand notation is used to refer to properties and attributes of concepts. The
shorthand can be summarized as follows:

– Attributes are accessed by using # and properties by using? as part of the
syntax of URIs. http://gale.win.tue.nl/someconcept#knowledge refers to the
knowledge value for “someconcept” for the current user and #knowledge
refers to the knowledge value for the concept to which the code is associated.
http://gale.win.tue.nl/someconcept?title refers to the title property of the
concept.

– someconcept->(somerelation) represents the list of concepts to which “so-
meconcept”’ has the relation “somerelation”.

– someconcept<-(somerelation) represents the list of concepts that have a
“somerelation” relation to “someconcept”.

– ${#knowledge} is the syntax used to retrieve the value of the knowledge
attribute.

– #{#knowledge, 100} is the syntax used to set the value of the knowledge
attribute (to 100 in this example).

Using this explanation we can now understand the Java code

GaleUtil.avg(new Object[]
{${<-(parent)#knowledge},${#read}}).intValue(),

which executes a GALE utility method “avg” on the list composed of all the
“knowledge” values of all concepts with a parent relationship to the current
concept and the “read” value of the current concept, and which then returns
this value rounded to the nearest integer. Such expressions can be used not
only in concept and adaptation rule definitions but also in pages, for instance
in the expression of an <if> tag. Typically these expressions would be simple,
like <if expr=”${#visited}==1”><then>This appears on the first visit only
</then></if>.

The easiest way to understand and create GAM adaptation code is to look at
examples and tutorial material from the GALE website gale.win.tue.nl.

5 Conclusions and Further Work

In the quest for the ultimate powerful, flexible and easy to use adaptive applica-
tion (authoring and delivery) platform GALE is the most recent attempt. The
research area of adaptive Web-based hypermedia systems has evolved from easy
to use but very rigid systems (e.g. Interbook [9]) to powerful, flexible and exten-
sible systems (first AHA! [3, 4, 6], now GALE) for which unleashing its power
and offering very simple authoring environments is an immense challenge.

A Fully Generic Approach for Realizing the Adaptive Web 75

In this paper we have explained the modular and highly configurable and ex-
tensible architecture of GALE and the powerful GAM adaptation language, and
have shown how we have attempted to keep authoring simple by reusing adap-
tation definitions created by others. Within the GRAPPLE project a graphical
authoring environment was created as well. In the future (planned before the
presentation of this paper) we will investigate how the graphical and textual
authoring methods compare in terms of acceptance by authors. As part of this
process more templates (for both authoring environments) will be created and
more modules and processors added to GALE as well.

GALE is already being used by researchers in different parts of the world and
by companies wishing to start delivering adaptive training material. This will
inevitably lead to the discovery of new requirements for more powerful func-
tionality for the next generation adaptive systems, so the quest for the ultimate
adaptive system continures.

Acknowledgments. This research was supported by The EU FP7 project
GRAPPLE, ICT-2007.4.1, project 215434. Earlier research on AHA! was sup-
ported by the NLnet Foundation.

References

1. Akkermans, P., Aroyo, L., Bellekens, P.: iFanzy: Personalised Filtering Using
Semantically Enriched TV-Anytime Content. In: Demo at the Third European
Semantic Web Conference (2006)

2. Amendola, I., Cena, F., Console, L., Crevola, A., Gena, C., Goy, A., Modeo, S.,
Perrero, M., Torre, I., Toso, A.: UbiquiTO: A Multi-device Adaptive Guide. In:
Brewster, S., Dunlop, M.D. (eds.) Mobile HCI 2004. LNCS, vol. 3160, pp. 409–
414. Springer, Heidelberg (2004)

3. De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, T., Smits,
D., Stash, N.: AHA! The Adaptive Hypermedia Architecture. In: Proceedings of
the Fourteenth ACM Hypertext Conference, pp. 81–84. ACM Press (2003)

4. De Bra, P., Calvi, L.: AHA! An open Adaptive Hypermedia Architecture. New
Review of Hypermedia and Multimedia 4, 115–139 (1998)

5. De Bra, P., Santic, T., Brusilovsky, P.: AHA! meets Interbook and more... In:
Proceedings of the AACE ELearn 2003 Conference, pp. 57–64 (2003)

6. De Bra, P., Smits, D., Stash, N.: The Design of AHA! In: Proceedings of the
Seventeenth ACM Conference on Hypertext and Hypermedia, pp. 133–134. ACM
Press (2006), http://aha.win.tue.nl/ahadesign/

7. Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. In: User Model-
ing and User-Adapted Interaction, vol. 6, pp. 87–129. Kluwer Academic Publishers
(1996)

8. Brusilovsky, P.: Adaptive Hypermedia. In: User Modeling and User Adapted In-
teraction, vol. 11, pp. 87–110. Kluwer Academic Publishers (2001)

9. Brusilovsky, P., Eklund, J., Schwarz, E.: Web-based education for all: A tool for
developing adaptive courseware. In: Computer Networks and ISDN Systems, Pro-
ceedings of the 7th Int. World Wide Web Conference, vol. 30(1-7), pp. 291–300
(1998)

http://aha.win.tue.nl/ahadesign/

76 P. De Bra and D. Smits

10. Brusilovsky, P., Schwarz, E.W., Weber, G.: ELM-ART: An Intelligent Tutoring
System on World Wide Web. In: Lesgold, A.M., Frasson, C., Gauthier, G. (eds.)
ITS 1996. LNCS, vol. 1086, pp. 261–269. Springer, Heidelberg (1996)

11. Bush, V.: As We May Think. The Atlantic Monthly (1945)
12. Conlan, O., Wade, V.P.: Evaluation of APeLS – An Adaptive eLearning Service

Based on the Multi-model, Metadata-Driven Approach. In: De Bra, P.M.E., Nejdl,
W. (eds.) AH 2004. LNCS, vol. 3137, pp. 291–295. Springer, Heidelberg (2004)

13. van Hage, W.R., Stash, N., Wang, Y., Aroyo, L.M.: Finding Your Way Through the
Rijksmuseum with an Adaptive Mobile Museum Guide. In: Aroyo, L., Antoniou,
G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)
ESWC 2010. LNCS, vol. 6088, pp. 46–59. Springer, Heidelberg (2010)

14. Hendrix, M., Cristea, A.I.: Design of the CAM model and authoring tool. In: A3H:
7th International Workshop on Authoring of Adaptive and Adaptable Hypermedia
Workshop, 4th European Conference on Technology-Enhanced Learning (2009)

15. Henze, N.: Adaptive hyperbooks: Adaptation for project-based learning resources.
PhD Dissertation, University of Hannover (2000)

16. Houben, G.J., van der Sluijs, K., Barna, P., Broekstra, J., Casteleyn, S., Fiala, Z.,
Frasincar, F.: Hera. In: Web Engineering: Modeling and Implementing Web Ap-
plications. Human-Computer Interaction Series, pp. 263–301. Springer, Heidelberg
(2008)

17. Knutov, E., De Bra, P.M.E., Pechenizkiy, M.: AH 12 years later: a comprehensive
survey of adaptive hypermedia methods and techniques. New Review of Hyperme-
dia and Multimedia 15(1), 5–38 (2009)

18. Kuflik, T., Stock, O., Zancanaro, M., Gorfinke, A., Jbara, S., Kats, S., Sheidin, J.,
Kashtan, N.: A Visitor’s Guide in an Active Museum: Presentations, Communi-
cations, and Reflection. ACM Journal on Computing and Cultural Heritage 3(3)
(2011)

19. Nelson, T.: The Hypertext. In: Proc. World Documentation Federation Conf.
(1965)

20. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications with
Oohdm. In: Modeling and Implementing Web Applications. Human-Computer In-
teraction Series, pp. 109–155. Springer, Heidelberg (2008)

21. Smits, D., De Bra, P.: GALE: A Highly Extensible Adaptive Hypermedia Engine.
In: Proceedings of the Twenty-Second ACM Hypertext Conference, pp. 63–72.
ACM Press (2011)

22. Wang, Y., Stash, N., Aroyo, L., Gorgels, P., Rutledge, L., Schreiber, G.: Recom-
mendations Based on Semantically-enriched Museum Collections. Journal of Web
Semantics: Science, Services and Agents on the World Wide Web 6(4), 43–50 (2008)

	A Fully Generic Approach for Realizing the Adaptive Web
	Introduction
	A Brief Overview of Adaptive Applications and Platforms
	The GALE Architecture
	GALE Processors and Modules
	The Execution of GALE Adaptation Rules

	GAM: The GALE Adaptation Model (GALE Code)
	Conclusions and Further Work
	References

