. GRAPPLE:
Integrating Adaptive Learning into Learning Management Systems

Paul De Bra, Mykola Pechenizkiy, Kees van der Sluijs, David Smits
GRAPPLE Project,)
Eindhoven University of Technology (TU/e)
Eindhoven, The Netherlands
grapple @win.tue.nl

_Abstract: GRAPPLE is an EU funded IST FP7 project that brings together a group of researchers
into adaptive learning technology and environments and developers of leamming management
systems (LMSs), in order to offer adaptive learning as a standard feature of future LM3s. This
papers presents the overali architecture of GRAPPLE, and explains some of the main challenges in
creating a truly general-purpose adaptive leamning environment {ALE) that can be used with
different L.MSs and a distributed architecture of user modeling services. In particular the paper
desmbes.the conceptual adaptation model, its translation into adaptation rules, and some
technological challenge that results from separating the concerns of adaptation and user modeling.

Introduction

After some initial isolated research efforts the field of adaptive technology-enhanced learni i

really' took off with the publication in 1996 of the seminal paper on adggtive hypennzl?:[llzgr (l‘::t:f al?:::‘i:l:\:'lsillc‘)
SBrus:lovsky 1996), which was updated in 2001 (Brusilovsky, 2001). A large number of research papers appeared 1?1
Jjournals and at copferences such as WebNet/ELearn, Intelligent Tutoring Systems, ED-MEDIA, User Modeling, and
later also the dedl-cated Adaptive Hypermedia conference series. A number of research prototy'pes of ada livcg :I'EL
systems were built, and mostly used only for demonstration purposes, or sometimes also for ada til:re course
delivery in the authors’ in:r»titutes. One noteworthy exception is the AHA! system (De Bra et al 20061; a general-
purpose open source adaptive hypermedia platform that has been used by researchers and educato;s from 'all fwer the
world". Howe\:er. to flate the use of adaptive technology in learning applications remains very limited. The
GRAF-'PLE project is aimed at changing that by bringing adaptive TEL to the masses. This is done by integrating an
adaptive TEL environment (henceforth abbreviated to ALE, for adaptive learning environment) with major Iean%z’n
management systems (or LMSs) using a service-oriented (web) framework approach. ' $

GRAPPLE bundles the expertise of researchers from [4 universities, research insti ies, i i
the creators of the adaptive systems AHA! (De Bra et al, 2006), KBS-Hype:'ll;:)t:)tltu:lsi::zdeceotmzsanl‘;;';)ncllllf'll?lg
(Hockemyer et al.'1998.). APeLS (Conlan et al, 2002) and WINDS (Kravcik et al, 2004) of' user r;lodelin
languagfs and services, mc[uding‘ UserML (Heckmann et al, 2003), (Heckmann et al, 2605) anzi the work of (Vaﬁ
der Sluijs et al, 2006), of experts in learning standards (e.g. the Open University Nederland and Atos QOrigin Spain)
of dcvelop.ers _of and contributors to LMSs including Moodle, Claroline and Sakai, and of developers of indll:striai
TEL apphc.atlons {Atos, Guinti Labs and IMC Information Multimedia Communication AG). The goal of
GRAPPI:E is to have the ALE become a “standard” component of the LMSs so that the thousan;is of institutes
(world wide) using these LMSs automatically have access to the ALE. "

In this paper we first describe why combining an ALE with an LMS i
 desc _ is a natural combinati i
complementary functionality,. We then give an overview of the GRAPPLE architeclure“::cllognfﬂgvgeg::(:ilgew:hlt

iﬁ Po W p i i i CI Lo T

: -
Some noteworthy examples are the AlcoZone alcohol tutorial from Virgini
are (t irginta Tech (Bhosale, 2006),
theory course from Korea University (Lee et al, 2005) and a programming course fIEOm thee,Slovak) ua;feﬁ?;a:;
Technology (Bielikovi et al, 2005). We are also aware of on-going work in Brazil, Colombia, and South Africa

-5183-

The “marriage” between an ALE and LMS

Many institutes in higher education, but also (large) knowledge-intensive companies, usc a leaming management
system to manage the Jearning process. This management consists of both administration of the processes and their
outcome and of facilitating the learning itself by means of course selection, delivery and evaluation tools. The
functions of an LMS include (but there are many more):

» registering (and later perhaps deleting) users, and authorization (login, access restrictions)

e enrollment in courses {or other types of learning modules)

o workflow (task management, notifying learners of assignments that are due, assignment of new tasks after

assessment of completed tasks, notifying tutors of completed assignments to be graded, etc.)
e distribution (or delivery) of Jearning material
e assessment (including mulutple-choice tests, but also upload of assignment work for off-line assessment by

a tutor)
e portfolio management (certifications, registration of completed courses or course programs)
s efc.

One would expect that the distribution of learning material would be very well supported by all LMSs and widely
used. However, in a lot of cases this part of the LMS is only used (in practice) to serve documents {complete course
texts as a single Word or pdf file, Powerpoint slides, etc.) that are not well integrated with (he functionality of the
LMS and do not enable fine-grained tracking of the learner’s progtess. This is where the ALE comes in. It performs
the following functions:
e presenting a course text as a website (pages with links, allowing fine-grained tracking of the learner’s

progress)

adaptive guidance through link generation, sorting, hiding or annotation

adaptive page content to automatically compensate for missing prerequisite knowledge

possibly other adaptive tools like adaptive tests, collaborative filtering (of links), efc.

In order to successfully combine an LMS and an ALE the following types of integration facilities are needed:

¢ single sign on: when a learner logs on in the LMS, goes to a course sub-site, and then to a course page (s)he
must be automatically be logged on in the ALE (and registered if this was not yet the case);

o user model/profile exchange and communication; the ALE must have access to the information the LMS
stores about the user (e.g. results of multiple-choice tests, but also previously attended courses or skills and
knowledge obtained elsewhere but registered in the LMS); potentially the LMS may need user information
from the ALE as well, to record what the user has studied, at a high level of abstraction {(whereas the ALE
keeps a fine-grained user model).

When an LMS and ALE are properly integrated the learner should not be aware that some of the used services are
offered by the LMS and others by the ALE. This can be achieved by having the ALE operate as one of the LMS's
100ls, presenting its output in one or more frames within the total presentation form offered by the LMS. GRAPPLE
aims at realizing such seamless integration between its ALE and different LMSs. It remains to be seen how seamless
the integration will be in the end. In an early experiment we have realized (in a collaboration with the University of
Linz, Austria) a truly seamless integration between the AHA! system and Sakai. This experiment has shown that
such ALE-LMS integration is possible.

The GRAPPLE architecture

Figure 1 shows the overall architecture of the GRAPPLE ALE part. Although inspired by past development on the
AHA! system a significant architectural difference is the separation of the adaptation engine from the user modeling
service. In GRAPPLE a leaming application is repfesented at the conceptual level through a conceptual adaptation
model or CAM. In terms of the AHAM reference model (De Bra et al, 1999) the CAM represents the Domain Model
(DM) and the Adaptation Model (AM), still called the “Teaching Model” in (De Bra et al, 1999). In the CaM
concepts are “connected”.with each other at different (semantic) levels. Unlike in the AHAM-based LAOS model

~ -5184-

{Cristea e.t al, 200_3) which has 5 fixed levels, in the GRAPPLE CAM there may be arbitrarily many levels, and they
may be dxffer'em in each lea_rning application. Typically the DM will correspond closely to 2 subject ontology (the
subject domain of the learning application or course), There can be several levels related to adaptation. A fask or
goal level may relate tasks or leaming goals o sets of concepls that need to be studied in order to achieve a goal or
to be at?h? to perform a task. A prerequisite level may connect pairs of (sets of) concepts to indicate that the
prerequisite concepts should be studied before the dependent concepts. This may be used to perform link hiding or
annptalmn, but also to automatically include prerequisite explanations. A process or sequencing level may indicate
desired sequences of concepts to be studied in a fixed order, or a lattice offering limited freedom in navigating
through me.concepts. :I‘hls may be used to generate a menu-like structure of links to the concepts, or a “next” button
for sequential navigation. Several conceptual adaptation structures in the CAM will use and possibly define how to
update the user model (UM). The language used to describe a CAM is stili being designed. It will be inspired by
el.emems from IMS—I:D (IMS, 2003) and from the LAG language used in the LAOS research, Even though this is 2
hlgl}-level language, independent of actua! adaptation engines to be used, authors cannot be expected to define the
desired gdaptalmn in any “technical” language. Therefore a graphical authoring tool for CAMs will be built to make
Ehe creation of CAMs possible withput any technical knowledge of the CAM language. The use of (the Graph Author
in AHA! has_alrcady stnown that with such a graphical tool authors can define reasonably complex adaptation. (We
have been using AHA!"s Graph Author for a number of years already in a course on adaptive hypermedia.) .

User Subj
ject
Model Ontology
A CAM
| Vocabulary
CAM |- Strategy

Translation
Model

Adaptation
Engine

%""" Browser

Figure 1. The GRAPPLE ALE architecture.

1 Leaming Object
Repository

?ﬁﬁx of a learning application needs to be translated to actual adaptation rules for the ALE. For instance in the

e n'-]lg Z:;]:;?sstthit concepts A and B are a prerequisite for concept C. This does not imply any specific

o e msm; ;1 dpl::f;n:):(é lgcthe ds_adaptauo; engine. It also does not indicate whether there are
) . Depending on what the author]

that defines a translation to the low level rule Janguage supported by cne (‘:;Tl]l:‘ ;.;':::tg‘::agggic::g?:e:elg:zﬁ

a low level translation could for instance state that concept C i i
is consid i
the knowledge of B both exceed 70%. So the low level ru]g could be sclm:;etl?i;;!]t;ge when the knowledge of A 213

C.suitability ;= (A.knowledge > 70) and (B.knowledge > 70).

-5185-

Figure 1 suggests that the rules are all executed by the adaptation engine. However, in reality there are two types of
rules:

o user model update rules: from the CAM we may deduce that when a user accesses a specific concept the
xnowledge value of the user for this concept <hould be increased in UM. This increase may imply a
(possibly smaller) change to the knowledge value of some other concepts as well, mainly to higher-level
concepts (in the subject ontology). Although in principle the adaptation engine could execute these rules
the resulting process would be very inefficient because it would involve numerous queries and updates to
the UM, which would involve a lot of inter-process communication at the query language level. Therefore
it is better to execute these rules within the UM (the “User Model” part of the architecture). Also,
prerequisites typically define that some concepts become suitable when enough knowledge is obtained
about some other concepts. The satisfaction of prerequisites can be determined efficiently by the UM part
whereas the adaptation engine would need numerous queries to UM (for the knowledge of prerequisite
concepts) to determine the suitability of concepts. (We come back to this choice latet.)

e adaptation rules: from the CAM we may also deduce that when a user accesses a specific concept we need
1o retrieve a certain resource or learning object (LO) to be presented. The rules to determine which
resoutce to present (or to query the LO repository for) are executed in the adaptation engine. Likewise, the
conditional inclusion of prerequisite explanations and the actions of link hiding or link annotation and the
generation of adaptively sorted (link) menus and guided tours are done by executing rules in the adaptation
engine.

The separation between UM and the adaptation engine is necessary in GRAPPLE because UM is no longer an
integral part of the ALE but is shared between the ALE and the LMS, What looks like a simple (black) box in the
erchitecture may be a distributed infrastructure of services that all know something about the learner. In principle it
is possible to connect not just two user models (from the ALE and LMS) but to connect arbitrarily many services,
with different owners. Profiles that users create on different on-line sites can be queried and possibly even updated
based on actions of the user in the learning environment (given that privacy issues are taken care of, which is a
different line within our research). Our experience shows that to generate a single page within a typical application
in an ALE many values have to be queried from the user model. In order to ensure reasonable performance of the
overall system the adaptation engine will therefore cache UM information for currently active users. However, in the
next section we will explain that such caching is not enough, and that the separation of the UM part from the
adaptation part leads to inherent performance problems that need to be tackled,

The interaction between adaptation and user modeling .

Leamers use the ALE component to get page by page access to learning material (e.g. a course text). Some of the
adaptation is based on stable properties of the user, like the user’s learning style. The adaptation may then consist of
the selection of a textual or graphical presentation (verbal/visual style) or a change in presentation order of
examples, explanation, theory and activities (activist/reflector style). The adaptation engine can query the UM
infrastructure or broker once, and cache the values obtained.

For adaptation to current knowledge values and for instance some associated prerequisites the situation is more
complicated: each action of the user may cause one Or more knowledge updates, which in tum may result in one or
more prerequisites becoming satisfied. In a tightly integrated system like AHA! a single engine, with an in-memory
copy of the user model, can compute the knowledge updates and the satisfaction of prerequisites i a (small) fraction
of a second, before sending the adapted page to the jearner. All user mode] updates are thus performed before the
page is sent to the learner’s browser, without causing any noticeable delay. In the distributed GRAPPLE scenario
this is no longer possible: .

e - When an event is signaled (by the engine) to UM it is unclear when all the UM updates will be ?erfonned
and thus when UM is ready for querying (the most recent up to date state), Some form of locking can of
course be used to temporarily block queries. But because of the distributed nature of_UM (split at least
between the ALE and LMS) the updates may not be ready in a fraction of a second (like in AHA!):

e When the generation of a page or 2 navigation menu involves checking the suitability of }he destination of
each link this involves too many queries to UM to wait for the answers before generating the (adapted)

- <5186-

page. A solution is for UM to signal updates on a common event bus and for the adaptation engine to cache
the user model. By means of caching an adapted page can be generated immediately, but after the page is
sent to the leamer some suitability values may still change. By using AJAX technology the resulting
changes in the presentation can be sent to the browser “later”, while the learner is studying the page.
Careful evalvation with leamners is needed to determine how this can be done in a way that does not disturb
the learner. We expect (but this must be validated) that when a word or phrase changes into a link (because
the link destination is determined to be suitabie after all) this might not be disturbing. Removing 2
prerequisite explanation (deemed no longer necessary) may be ill advised though.

Clearly the aspect of asynchronicity between the processes of user modeling and adaptation needs careful
investigation as it will have considerable impact on the overall usability of the adaptive delivery of learning
material.

Conclusions and Future Work

The GRAPPLE project promises to bring adaptive TEL to the masses by incorporating an adaptive learning
environment (ALE) in popular leaming management systems (LMSs). This integration however is not as easy as it
looks: the aspects of user modeling and adaptation are necessarily split between different components, resulting in
foreseeable performance problems. Because GRAPPLE is not just a research project but aims to deliver a
production-quality ALE a lot of attention must be paid 1o performance issues right from the start.

GRAPPLE also emphasizes the usability of the ALE for authors (or course designers). Therefore authoring is done
using comfortable graphical authoring tools (that will be designed with existing tools such as the Graph Author of
AHA! in mind). Actual low level adaptation rules will be generated through templates (in a Translation Model), thus

making the high level Conceptual Adaptation Model (CAM) completely system-independent and thus a candidate
for going through a standardization process.

Further developments in the GRAPPLE project, before, during and after ED-MEDIA 2008, can be followed at
www.grapple-project.org.

Acknowledgement
This work is has been performed in the framework of the IST project IST-2007-215434 GRAPPLE which is partly

funded by the European Union. The authors would also like to acknowledge the contributions of their numerous
colleagues from all 14 GRAPPLE project partners.

References

Bielikovd, M., Kuruc, J., Andrejko, A. (2005). Leaming Programming with Adaptive Hypermedia System AHAL,
Proc. of ICETA 2005 - 4th Int. Conf. on Emerging e-learning Technologies and Applications, Slovakia, pp. 251-
256.

Bhosale, D. (2006). AlcoZone: An Adaptive Hypermedia based Personalized Alcoho! Education. Master Thesis,
Virginia Tech, available at http:/scholar.lib.vt.edu/theses/available/etd-05172006-153545/.

Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted
Interaction, 6 (2-3), pp. 87-129, Kluwer.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User Adapted Interaction, Ten Year Anniversary
Issue, 11 (1/2), pp. 87-110, Kluwer.

Conlan, O., Hockemeyer, C., Wade, V., & Albert, D. (2002). Metadata Driven Approaches to Facilitate Adaptivity
in Personalized eLearning systems. The Journal of Information and Systems in Education, 1,38-44.

-S187-

Cristea, A., De Mooij, A. (2003). LAOS: Layered WWW AHS Authoring Model and its corresponding Algebraic
Operators. Proceedings of the WWW Conference, Alternate Education Track, pp. 301-3 10, Budapest, Hungary.

De Bra, P., Houben, G.J., Wu, H. (1999) AHAM: A Dexter-based Reference Model for Adaptive Hypermedia.
Proceedings of the ACM Conference on Hypertext and Hypermedia, pp. 147-156, Darmstadt, Germany, 1999.

De Bra, P., Smits, D., Stash, N. (2006). The Design of AHA!, Proceedings of the ACM Confere{zce on Hy;'rertexr
and Hypermedia, pp. 133, Odense, Denmark. The adaptive version of this paper is available on-line at
httpx/faha.win.tue.nl/ahadesign/.

Heckmann, D., Kriiger, A., (2003). A User Modeling Markup Language (UserML) for Ulgiquilous Computing. In
Proceedings of User Modeling 2003, 9 Int. Conf., Johnstown, PA, pp. 393-397, LNCS, Springer Verlag.

Heckmann, D., Schwartz, T., Brandherm, B., Kroner, A. (2005) Decentralized User Modeling with UserML a!nd
GUMO. Proceedings of the Workshop on Decentralized Ageni Based and Social Approaches to User Modelling
(DASUM 2005), Edinburgh, Scotland, pp. 61-65.

Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., Wilamowitz- Moellendorff, M. von. (20?5) GUMO - the
General User Model Ontology. Proceedings of the 10th International Conference on User Modeling, LNAI 3538,
pp. 428-432, Edinburgh, Springer Verlag.

Henze, N, Nejdl, W. (1999). Adaptivity in the KBS Hyperbook System. 2nd Workshop on Adaptive Systems and
User Modeling on the WWW, workshop held in conjunction with the World Wide Web Conference (WWW8) and the
International Conference on User Modeling.

Hockemeyer, C., Held, T., & Albert, D. (1998). RATH — A Relational Adaptive Tutoring Hypertcxl WWW-
Environment Based on Knowledge Space Theory. In C. Alvegird (Ed.), CALISCE"98: Proceedings of ihe Fourth
International Conference on Computer Aided Learning in Science and Engineering (pp. 417-423). Géteborg,
Sweden; Chalmers University of Technology.

IMS Global Learning Consortium. (2003). IMS Learning Design Information Model.

i i i i Third International
Kravtik, M., Specht, M., Oppermann, R. (2004). Evaluation of WINDS Authoring Environment. 4
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH2004), pp. 166-175, Eindhoyen,
LNCS3137, Springer Verlag, 2004,

Keewoo Lee Hyosook Jung Seongbin Park (2005). Applying adaptive hypermedia technologies to a leaming tool.
Fifth IEEE International Conference on Advanced Learning Technologies, ICALT, pp. 202-204.

Van der Sluijs, K., Houben, G.J. (2006). A Generic Component for Exchanging User Models between Web-based

Systems, International Journal of Continuing Engineering Education and Life-Long Learning, Vol. 16, Nos. 112, p.
64-76, Inderscience.

-5198-

