
GALE: A Highly Extensible Adaptive Hypermedia Engine

David Smits, Paul De Bra
Information Systems Group

Department of Computer Science
Eindhoven University of Technology

d.smits@tue.nl, debra@win.tue.nl

ABSTRACT
This paper presents GALE, the GRAPPLE Adaptive Learning
Environment, which (contrary to what the word suggests) is a
truly generic and general purpose adaptive hypermedia engine.
Five years have passed since “The Design of AHA!” [4] was
published at ACM Hypertext (2006). GALE takes the notion of
general-purpose a whole lot further. We solve shortcomings of
existing adaptive systems in terms of genericity, extensibility and
usability and show how GALE improves on the state of the art in
all these aspects.
We illustrate different authoring styles for GALE, including the
use of template pages, and show how adaptation can be defined in
a completely decentralized way by using the open corpus
adaptation facility of GALE.
GALE has been used in a number of adaptive hypermedia
workshops and assignments to test whether authors can actually
make use of the extensive functionality that GALE offers.
Adaptation has been added to wiki sites, existing material e.g.
from w3schools, and of course also to locally authored hypertext.
Soon GALE will be used in cross-course adaptation at the TU/e in
a pilot project to improve the success rate of university students.

Categories and Subject Descriptors
H.5.4 [Information Interfaces And Presentation]:
Hypertext/Hypermedia – Architectures, Theory.

General Terms
Experimentation, Human Factors, Languages.

Keywords
Authoring, adaptive hypermedia, adaptation engine.

1. INTRODUCTION
In Vannevar Bush’ article “As We May Think” [8] the concept of
linking information items was introduced. In a way the “Memex”
device Bush envisioned was a form of hypertext. In addition, the
user action of building “trails of his interest through the maze of
materials available to him” was a first clear sign of using
personalization to cope with information overload. Furthermore
the personalization also included adding some kind of annotation:

“he inserts a page of longhand analysis of his own”. This shows
that just linking information items (possibly from different
authors) may not constitute a coherent story, hence the
annotations or what we would call content adaptation.

The personalization envisioned by Bush was aimed at revisiting
information (finding it again through trails), and at recalling a
previously discovered meaning. When Bush defined trailblazing
as a possible new profession we can understand this as doing
personalization for others. Adaptive hypermedia research, first
summarized by Brusilovsky in 1996 [5] and updated in 2001 [6]
aims at automating this “trailblazing” through link adaptation and
the annotations through content adaptation. Knutov et al [12]
describe (in 2009) many new adaptation techniques developed to
date and provide a list of challenges for creating a new generic
adaptive hypermedia system, capable of dealing with ontologies,
open corpus adaptation, group adaptation, information retrieval
and data mining, higher order adaptation, context awareness and
multimedia adaptation.

This paper aims to show how GALE (which to some extent is a
successor to AHA! [2, 4]) tackles some of these challenges. It not
only describes the core functionality of GALE but specifically
shows (through examples and results of authoring experiments)
how GALE can serve as the adaptation engine for different
adaptive hypermedia applications.

This paper is organized as follows. Section 2 presents the global
architecture of GALE. We concentrate on three aspects: the
processor pipeline (for selecting and adapting resources), the
configuration through which you can completely alter GALE’s
behavior, and the event bus and services through which you can
make GALE compatible with different adaptation languages.
Section 3 presents an application developed by a student to show
the complementarity of the conceptual structure and the content of
an adaptive application. We also list some other adaptive sites that
were created by groups of students, with or without the graphical
CAM authoring tool [10] developed in the GRAPPLE project.
You can read Sections 2 and 3 in any order. Section 2 is a
technical explanation and Section 3 contains examples. If this
paper were adaptive (like [4]) this would have been more obvious.
Section 4 describes the next big step in adaptive hypermedia
authoring: open corpus adaptation, where content and adaptation
are not only fused but can be distributed over arbitrarily many
websites, with each page defining its own adaptation. Finally we
discuss related work, some of which suggests future developments
in adaptive hypermedia as we realize that no matter how generic
GALE is a new and more generic generation of adaptation engines
is expected to be developed in another few years time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HT’11, June 6–9, 2011, Eindhoven, The Netherlands.
Copyright 2011 ACM 978-1-4503-0256-2/11/06...$10.00.

63

Figure 1. The architecture of GALE.

2. THE ARCHITECTURE OF GALE
Figure 1 shows the GALE architecture. We will concentrate on
the purple part (bottom left) which deals with the adaptation to a
resource (file or page), the green part (top left) which mainly deals
with configuration, login and handling user requests, and some of
the blue part (top part of the right side) which deals with internal
and external services to handle adaptation formats and user
modeling services. If you are reading this paper sequentially and
you feel this section may be too technical to start with you should
read section 3 first and then come back here. (We mean it!)

Let us first consider the overall process of GALE handling a
request from a user (which typically comes in as a request for a
URL, sent from the browser through http). We can visually
represent this process as shown in Figure 2 (on the next page).
The process involves interaction with the Domain Model (DM) of
an application (describing the topic domain and adaptation) and
the User Model (UM) which holds all the information GALE
knows about each individual user.

1. If this is the first request the user sends since starting the
browser no session will be associated with that request, so a
session is initiated and a login procedure started. This is
standard behavior for Web-based applications. GALE can
work with several login managers (see Section 2.2) but for
stand-alone GALE use the login follows the following multi-
step procedure:

a. For a first request (without session information as there
is no session yet) the user is still unknown. The login
manager redirects to a servlet/page that prompts the user
for a user id and password.

b. The user id is passed on to the UM cache, to request the
application-independent part of UM for this user.
Internally GALE refers to this as the user entity.

c. Since the UM cache will not have cached the user
model yet, it will communicate with the user model
service through the event bus.

d. UM is needed by the login manager to verify that the
user has provided the correct password. Next the login
manager (servlet) returns a redirect to the original URL.
As a result the user’s browser will request the same
concept again, this time with session information.

2. GaleServlet now calls the concept manager in order to find
out how to handle the request. If the request is for a concept,
the concept manager will determine the identity of the
requested concept and retrieve the domain and adaptation
data for the concept from the DM cache (which may need to
load it from a Domain Model service). If the URL does not
refer to a concept it is handled differently (e.g. a file can be
simply retrieved and served, as in the case of an image).

3. Handling the concept is a multi-step sub-process that uses
processors (more or less in the top to bottom order as shown
in the purple part of Figure 1). GALE can be extended with
new processors that can be used anywhere in the processing
pipeline. (We describe these extensions in Section 2.2.)
Section 2.1 describes the default processor pipeline.

64

Figure 2. Handling a request for a concept.

2.1 The GALE Processor Pipeline
The processing of a concept (request) is done through a series of
processors (each one handling the output of the previous one).
The processors are controlled using a level that is updated each
time a processor finishes. The association of acceptable levels is
done in the configuration (see Section 2.2), thus defining a very
simple process model. One can insert a processor into the
processor chain by choosing the range of levels in which the
processor becomes active.

GALE uses its own language GAM to define an application’s
domain and adaptation model (DM). Section 4 contains some of
that code. Here we use a subset of GAM which we refer to as
GALE code. This is code to either evaluate an expression over
information from DM and UM or to update values in UM. UM is
the main information source for the personalization (or
adaptation) offered by GALE. We sometimes use a property of a
concept, which is a DM element, and sometimes an attribute,
which is a UM element. The GALE code is in fact Java code in
which some shorthand notation is used to refer to concepts,
properties and attributes. Section 3 gives several examples of
GALE code. Here we just give a bare minimum introduction:

${#suitability} refers to the suitability attribute of the current
concept (# always refers to a attribute).

${#image?title} refers to the title property of the image attribute
of the current concept (? always refers to a property).

${->(parent)?type} refers to the type property of the parent of the
current concept (following the parent relation).

#{#visited, ${#visited}+1}; is a statement that assigns the result
of ${visited}+1 to the visited attribute of the current concept. It
thus simply increments the visited attribute by 1.

We now explain the processors of the pipeline in the order they
are called (which is the top to bottom order in Figure 1).

1. The first processor that is called is the UpdateProcessor. It
signals an EventManager that the ‘access concept’ event has
occurred. The default EventAccessHandler executes the event
code of the concept as defined in DM. Typically this event
code will signal some UM update to the UM cache. For
instance, the counter of visits to the concept may be
incremented. UM cache communicates over the event bus
with the UM service. Event code associated with UM
attributes may prompt the UM service to generate more UM
updates. The resulting changes to UM are posted on the event
bus, and as a result are integrated in the UM cache.
So, important to note here is that 1) UM updates are
calculated before generating adaptation (a design choice that
corresponds to previous behavior of AHA! and motivated
and explained in [4]), and 2) UM updates come from both the
UpdateProcessor (in the adaptation engine) and from (event
code) rules executed within the UM service. This distributed
execution of UM updates is essential in GALE as GALE can
also be used together with external UM services, including
the GRAPPLE user Model Framework GUMF [1].

2. After the UM updates have been performed the
LoadProcessor will retrieve the actual resource (file)
associated with the concept. The name of the resource is
found in the resource attribute of the concept. This “name”
may refer to a local file, a file to be retrieved from some
server using http, or may be a (GALE code) expression over
DM and UM to “compute” the name of the actual resource.
An InputStream is opened so that a subsequent processor can
load and process the data. File name extensions are used to
determine the mime type of the resource.

3. Optionally the LogProcessor then adds an entry to a global
log file (access.log by default). The id of the user, date,
request, referrer (that may be present in the HTTP request),

65

the name of the requested concept and the resulting resource
are logged, for possible later analysis. Note that as the
UpdateProcessor runs before the LoadProcessor it cannot
log the name of the resource somewhere in the user model as
that name is not yet known at the time. But the resource
name can be logged by the LogProcessor which runs later.

4. If the mime type of the resource is some kind of HTML (but
not XHTML) the HTMLProcessor uses the (open source)
Tagsoup1 converter to convert the file to XHTML. The new
InputStream now contains valid XHTML.

5. If the input is XML (also XHTML) the ParseProcessor
converts the input into an in-memory DOM tree, using the
open source dom4j2 parser. (We will not describe the
processing of non-XML input further.)

6. The XMLProcessor walks through the DOM tree in order to
perform adaptation where needed. The modules that may be
used to perform adaptation to certain tags are loaded by the
XMLProcessor. The configuration file (see Section 2.2)
indicates which XML tag is handled by which module.
Modules are provided to handle “if” tags, “object” tags,
links, variables, and more. Adding new modules to handle
different tags, possibly in different XML formats, is
relatively easy. Within the GRAPPLE project the addition of
modules has been investigated for device adaptation and for
adaptation to virtual reality [16].

7. Optionally, the LayoutProcessor generates a frame-like
structure using tables, by creating an (in-memory) XML
document that contains the views (any class that implements
the LayoutView interface) embedded in a table that defines
the layout. This XML document has a placeholder element
where the actual content should be. A CSSLayoutProcessor
is available that uses css and div sections to layout the
browser screen. A FrameLayoutProcessor can also be used
that uses an iframe element to display the actual content. The
different processor choices make it possible to combine
GALE with many other presentation structures (e.g. with
portals or learning management systems).

8. When the DOM tree is adapted the SerializeProcessor
generates the textual XML representation and presents that to
GaleServlet as an InputStream. For resource types that do not
have specific processors associated with them GaleServlet
will create this InputStream itself in order to send the content
back to the browser. This happens for instance with images
embedded in HTML pages. (For some special resource types
GaleServlet calls a special PlugIn that may generate its own
output. These plug-ins set the level to 100, which for
GaleServlet means that the output was already generated by
the plugin itself. Examples of such plug-ins are the Password
and the Logout PlugIn.)

2.2 GALE Flexibility through Configuration
GALE was developed as part of the GRAPPLE EU project.
GRAPPLE aimed at integrating open source or commercial
Learning Management Systems (LMS) with Adaptive Learning
Environments (ALE). The project aimed at making adaptivity
available to a broad audience (mainly in technology-enhanced
learning). To this end the adaptation engine needed to be made

1 See ccil.org/~cowan/XML/tagsoup/ for more information.
2 See dom4j.sourceforge.net for more information on dom4j.

very generic and extensible, because developers of adaptive
applications are expected to have special desires for adaptation
functionality we might not foresee. Within the project itself
adaptation in simulation and adaptation in virtual reality were
already considered, as well as device adaptation. Different LMS
may require a different way of embedding GALE output in their
presentation. The different layout processors make this possible.
To make GRAPPLE usable with many different LMS and to
support life-long learning a repository of user-specific
information was needed (the GRAPPLE User Modeling
Framework, GUMF [1]). Different LMS store information in
GUMF, and Section 2.1 already explained how input from such an
external UM service is captured by GALE’s UM cache. The
integration process between LMS and ALE is described more in
detail for instance in [15].

GALE uses the Spring “inversion of control”3 container to
configure and instantiate all components. Without going too much
in detail we describe the most important configuration elements
here (omitting small things like where the access log file or some
other files are stored or at which address GEB and GUMF are
located). The GALE configuration is stored in the file
galeconfig.xml (in Tomcat’s webapps/gale/WEB-INF directory).
What the configuration mostly does is associate names that have
meaning as functional parts of GALE with a Java class name
(implementing the functionality) and it also defines which
properties configure the behavior of that functional part.

1. The processorList defines processors that handle a request
and adapt resources. The main processors have been
mentioned in Section 2.1 already. Here we look specifically
at two processors: XMLProcessor and PluginProcessor.
a. The XMLProcessor performs transformations (for

adaptation) to the DOM tree of an XML resource. The
configuration contains a list of Modules that handle
specific XML tags. Adding adaptation to a new tag can
be done by creating a new module and associating it
with the tag in this list. We only present a small
selection from the default modules:
 The IfModule handles the <if> tag. It expects <if>

to have an argument “expr” that is a Boolean
expression in GALE code. It expects one or two
child elements: a <then> and optionally an <else>
element. The module replaces the <if> subtree by
either the content of the <then> subtree or the
<else> subtree. The IfModule thus realizes what is
known as the adaptive inclusion of fragments
technique [12].

 The AdaptLinkModule handles the <a> tag which
is used just like the HTML <a> tag, but referring to
a concept, not a page or resource. GALE (actually
the LoadProcessor) decides which page to retrieve
and return based on the resource attribute of the
concept. An optional exec argument can be used to
associate a (UM) action with following the link.
For instance: exec=”#{tour#start,true};” could be
used to say that following this link indicates the
start of a tour, whereas accessing the same concept
(tour) through other links does not.

 The ObjectModule inserts either a file specified
through the data argument or a concept specified

3 See www.springsource.org for more details.

66

through the name argument. The <object> tag is
preferred over the <if> tag when the same fragment
needs to be conditionally included in many
different pages. With data=”header.xhtml” we can
insert a header file in a page, whereas with
name=”programming” we insert whichever
resource is associated with the concept
programming (possibly involving evaluating
expressions to select a resource).

 The VariableModule inserts either the value of a
UM attribute or the result of a GALE expression in
the page. <variable name=”#visited”/> for instance
shows the number of visits to the current concept;
<variable expr=”${#visited}”/> does the same, but
now as expression.

 The AttrVariableModule is similar but inserts its
result in the surrounding element’s tag.
<attr-variable name=”src”
 expr=”${?image}”>
uses the value of the image property of the current
concept as the source (url) of an image to insert.
Note that because of syntax restrictions of the
XML language we could not use <variable> inside
the tag itself. (Arguments of an XML
element cannot contain XML elements.)

 The ForModule repeats a fragment of XML for
elements in a list.
<for var=”concept” expr=”${<-(parent)}”>
 <variable expr=”${%concept?title}”/>
</for>
inserts a list of titles of the children of the current
concept4.

 The PluginModule generates a link to a plug-in. (It
does not perform the plug-in code itself as this is
done by the PluginProcessor described below.
<plugin name=”logout”>Logout</plugin> results
in a link through which the user logs out. Note that
because GALE transforms <plugin> into a link
anchor the description of the plugin (the word
“Logout” in the example) must not contain an <a>
tag but can contain other HTML tags if desired.

b. The PluginProcessor handles plug-ins that perform
some function and then generate “complete” output.
Examples of plug-ins are the password and logout plug-
ins (to change the user’s password and to log out), the
mc plug-in to evaluate a multiple-choice test, exec to
execute some GALE code and show the result (used
mostly for debugging purposes), and export to generate
a textual representation of a whole application (DM).

2. The hibernateDataSource bean controls how GALE stores
data (including DM and UM). As we use Hibernate5 GALE
is independent of the database backend used. We have used
two storage methods so far: hsqldb which stores data in a
simple text format and mysqldb to store data in a MySQL
database. MySQL (or any other real database like Postgres or
Oracle) is recommended for a real server installation. In that

4 The construct <- in fact has to be written as <- because of an

XML syntax restriction, but we wrote <- for clarity. We make
this “error” throughout the paper to improve readability.

5 See www.hibernate.org for more information.

case it is possible to use a separate machine for the database
to offload the GALE server.

3. Figure 1 shows that GALE uses an internal event bus through
which the core GALE engine communicates with DM and
UM and other services. Two implementations of this bus
exist: one (LocalFactory) that uses method calls and thus
requires all services to reside on the same server and one
(SOAPFactory) that uses SOAP and can handle DM and UM
services that run on different machines. The event bus is
configured to communicate with a number of services. (This
bus uses the Publish/Subscribe method.) The DM and UM
services are most obviously needed, but several other
services exist to implement compatibility of GALE with
different authoring formats and tools for adaptive
application, as described in Section 2.3 below.

4. The loginManager bean defines how GALE users can
identify themselves. The DefaultLoginManager presents a
simple form for username and password (explained in
Section 2.1). The LinkLoginManager allows LMS users to
automatically log in on GALE using the id they have on the
LMS. The LMS uses a “secret” key to identify itself to
GALE and essentially “promises” that the user is who (s)he
says (s)he is. The IdPLoginManager makes use of
Shibboleth6 to make GALE usable in a federation of
institutes/companies that share a single sign-on facility.

5. The codeManager defines which language of adaptation code
is used. All examples of GALE code used in this paper use
GAM: Java with some shorthand to refer to DM and UM
values, but it is possible to use very different code provided
that a new code manager is developed. Note that in GALE
there are actually two code managers (slightly different): one
in the adaptation engine (dealing with concept event code
and GALE expressions used in GALE XML tags) and one in
the UM service (dealing with UM attribute event code).

6. The configManager is a wrapper for handlers of different
types of configuration: for processors, for link adaptation
(with icons) and for presentation. The latter (Presentation-
Config) defines which automatically generated parts can exist
in the presentation of adapted pages. By default there is a
static-tree-view which displays a menu over the hierarchy of
concepts of the current application (see Figure 6), next-view
which generates a link to the next concept in a guided tour
(see Figure 5), and file-view which inserts (and adapts) a file
with a fixed name. The file-view is used to include a header
and/or footer for instance (see Figures 5 and 6).

2.3 GALE and other Adaptation Formats
Fifteen years after the first seminal adaptive hypermedia paper [5]
it is an illusion that a new general purpose adaptation engine can
be designed and built that ignores all earlier attempts at defining
and implementing languages for specifying adaptive hypermedia
applications. As Figure 1 already shows GALE’s event bus can
handle different “Domain Services”. GALE stores “Domain
Models” (including adaptation rules) using its built-in DM service
based on GAM (for examples see Section 4). A new GALE
application is normally developed using GRAPPLE’s CAM editor
[10] (also called Course editor) and then compiled into a GALE
domain model. Using the export plug-in such a model can be
represented in a textual format, called GDOM. When you edit

6 See shibboleth.internet2.edu for more details.

67

such a GDOM file and save it (in GALE’s “config” directory) the
GDOM domain service will load and interpret it. (GDOM was
used as GALE input format while the GRAPPLE authoring tools
were still being developed and has now been superseded by
GAM.) Likewise you can store an AHA! version 3 “.aha” file in
GALE’s “config” directory and the AHA3 domain service will
load and interpret it. Existing AHA! applications can thus easily
be ported to GALE. The course “Hypermedia Structures and
Systems” (that has been running at the TU/e since 1993 and that
was made adaptive in 1996) has not only been running on all
versions of AHA! but is currently being served by GALE. Other
AHA! applications will soon follow (including the AHA! Design
paper [4]) as we are phasing out our existing AHA! installations.

Creating domain services for different formats is easy as long as
these formats are based on the idea of “concepts” (with some
associated data structure) and “adaptation rules” that can be
translated to the model with event-condition-action rules used by
GALE and as long as content (pages) is written by the author (not
generated completely from a Web-based information system).
Well-known systems like Interbook [7] and KBS-Hyperbook [11]
follow this model and their applications can be “easily” imported
by adding a GALE DM service. (In fact, Interbook was already
translated to AHA! version 3. [3]). Dedicated DM services for
alternative formats handle differences in syntax but cannot deal
with very different conceptual application models.

Languages like LAG [9] may require some content generation and
are thus more difficult to convert. (GALE can only do limited
content “generation” through the <for> tag and ForModule
explained in Section 2.2.) When content needs to be generated a
DM service alone is no longer sufficient, but a compiler can
generate the GALE DM and content. This has been done for LAG
to AHA! already. Once such a compiler is involved it can generate
a “real” GALE DM, alleviating the need for a special DM service.

Within GRAPPLE the language GAL was developed [14] for
which GALE does not (yet) have a domain service. GAL allows
the use of arbitrary query languages to express queries over the
domain and user model. In order to implement GAL first of all a
concrete query language needs to be chosen. In [14] all examples
use SPARQL. Translating SPARQL to GALE code would be
difficult (although theoretically not impossible), but replacing
GALE code by SPARQL could be done as GALE can be
configured to use any code language (as long as an interpreter for
the desired code language is added to GALE). Like with LAG the
use of GAL also implies the generation of content, so a compiler
rather than just a DM service would be needed.

3. APPLICATIONS REALIZED IN GALE
This section is an example-based introduction to (and motivation
for) GALE. It can be read without first reading Section 2. This is
our “poor man’s” attempt to do personalization on paper.

We will not describe how to define an overall adaptation strategy
or how to design the adaptation based on pedagogical relationship
types such as prerequisites. This is the subject of GRAPPLE’s
(CAM) authoring too described in [10].

GALE supports two approaches towards creating the content of an
application, represented in figures 3 and 4 (taken from [13]).

Figure 3. Creating pages separately.

Figure 4. Authoring through template pages.

Figure 3 shows an author writing complete pages. This is a viable
option for authors who wish to create adaptive applications
without writing (or even seeing) any GALE code. This approach
is also well suited for an application in which pages do not have a
common structure. The hypermedia course at the TU/e was
created in this way and the GRAPPLE tutorial (at
http://gale.win.tue.nl/) as well. This is also a good approach for
making existing applications adaptive, for instance applications
generated from databases (possibly from a content management
system or a wiki).

Figure 4 shows an example where a cluster of pages share the
same structure. (A and B are alike, X and Y are also alike.) When
pages are created separately one needs to be careful to replicate
the style on all pages that should be similar, and changing the
style involves changing all these pages individually. Therefore
Figure 4 shows the use of one template page for each set of pages
that should look alike. The templates are used to (virtually) create
individual pages by indicating which bits to use where in the
template. Changing the presentation of all pages that use the same
template requires a single file to be edited. Figure 5 shows the
presentation of a concept from the application Milkyway that was
created by a master student at the TU/e [13]. All pages of
Milkyway have the same look and feel, not only with the header
and footer (and a navigation menu that we cut off) but also within
the main content part of the page. Milkyway deals with stars,
planets and moons, and has slightly different templates for each of
these types of celestial bodies. Below we explain the template
used for presenting planets.

68

Figure 5. Example of a page based on a template.

In a GALE application every concept can have an associated
layout. In this example the header and footer are defined as part of
that layout. The layout can be different for each concept and can
also be adaptively changed but we do not expect this to be
common7. The “main” part of the presentation is the page. In
Milkyway the page consists of a title (Jupiter), a typology (Is
Planet of: Sun), an image with title, an information fragment and a
list of links to children (The following Moon(s) rotate around
Jupiter.) Below we show how each part is defined, to give you a
feel for creating pages containing GALE tags and GALE code.
All domain model properties that are used (like “Jupiter”, “Sun”)
and relations (like “parent” and “isPlanetOf”) are created using
the graphical GRAPPLE authoring tools (the Domain editor to be
exact) that are not described in this paper.

 In the header we see the name and email of the user. The
code <variable name="gale://gale.tue.nl/personal#name"/>
and <variable name="gale://gale.tue.nl/personal#email"/>
extracts that information from the user model and inserts it in
the page.

 The title “Jupiter” is generated by means of the code
<variable expr="${?title}"/> which inserts the title property
of the current concept in the page. As shown in Section 2.1
the # sign refers to a user model attribute and the ? sign refers
to a domain model property.

 The “Is Planet of: Sun” is a bit more complex. “Planet” is
actually the title of the parent concept and “Sun” is the title
of the concept to which Jupiter has an isPlanetOf relation.
<a><attr-variable name=”href” expr=”${->(parent)?title}”/>
generates the link anchor tag. Calculating the value for the
“href” argument cannot be done inside the <a> tag so it is
done using <attr-variable> (see Section 2.1). The anchor text
is <variable expr="${->(parent)?title}"/> (which generates

7 The hypermedia course actually does use adaptive layout to

show or hide a navigation menu. The adaptive layout is the only
observable difference between the course previously served
through AHA! and the new version served by GALE.

the word “Planet”). The link to “Sun” uses <a><attr-variable
name=”href” expr=”${->(isPlanetOf)?title}”/> <variable
expr=”${->(isPlanetOf)?title}”/>. Like with “Planet” the
same expression appears twice because “Sun” is the anchor
text as well as the link destination.

 To insert the image (we ignore the title here) we use the code
<attr-variable name="src" expr="${?image}"/>
where the name (URL) of the image is part of the domain
model (created with the Domain editor). As you see the attr-
variable tag can be used in combination with any other tag.

 The information fragment is stored in a separate file and
included in almost the same way as the image: <object><attr-
variable name="data" expr="${?info}"/></object>. The
name of the file is part of the domain model.

 The list of moons is generated using the <for> tag.
(Milkyway additionally checks whether a planet has moons
to avoid generating an empty list if it doesn’t.) We only show
the code for the list (not for “The following moons rotate…”)

<for var="concept" expr="${<-(isMoonOf)}">
 <a><variable expr="${%concept?title}"/>
 <attr-variable name="href"
 expr= ""%concept""/>

</for>

All concepts with an isMoonOf relation to the current
concept are associated, one by one, with the variable
“concept”. A bullet list is generated with for each such
concept a list item with a link to the concept and with the title
of the concept as link anchor text.

The Milkyway application has a “Course model” in which
prerequisites are defined. For instance, a planet should be studied
before studying its moons is recommended. Figure 6 shows the
page about the concept “Moon”. This time we have not cut off the
navigation menu. In this menu we see link annotation (with link
colors and with colored balls) to indicate that only the four moons
of Jupiter are recommended (as we only studied the planet Jupiter
and no other planet that has moons).

Figure 6. Link adaptation based on prerequisites.

The link annotation shown in Figure 6 uses the same “good”,
“neutral” and “bad” link classes (blue, purple, black) that were

69

previously used in some AHA! applications. In GALE (and in fact
already in AHA! as well) you can define arbitrarily many link
classes and arbitrary conditions for deciding which class a link
should have. The default class and color scheme are suitable for
the default adaptation (or pedagogical) models created using the
GRAPPLE authoring tools (described in [10] for instance). The
graphical authoring tools hide the complexity of the GALE
adaptation rules from authors, but they do enable (advanced)
authors to create their own arbitrarily complex rules (specified in
the GRAPPLE Adaptation Model language GAM).

At the TU/e we had (groups of) students develop their own GALE
applications, using any content they desired, and using mostly the
GRAPPLE authoring tools for defining the adaptation. Some of
the applications they developed are:

 basic Web tutorials (mostly about HTML and CSS) based on
learning material from W3Schools;

 tutorials for programming languages or technologies (PHP,
Python, C#, OpenGL);

 sports tutorials (tennis & tennis competition);
 an adaptive information site on Dutch universities;
 an introduction to the animal kingdom (not the Disney one);
 a tutorial on drinks (hot, cold, alcoholic or not);
 a Star Trek Voyager tutorial;
 an adaptive tutorial on hypertext.
All of these examples used adaptive navigation support through
prerequisite relationships, some added content adaptation, some
used template pages, some developed their own layout, some used
content from a wiki, and one group even invented a new
relationship type (the disjunctive-prerequisite which requires only
one source concept to be known instead of all source concepts).
All students had comments (criticism) on the GRAPPLE
authoring tools for creating the conceptual structure. Very few had
any problems with (or gave negative comments about) the GALE
adaptation engine. All students reported that once the authoring
tools were more or less mastered the design and implementation
of their adaptation models took between 10 and 15 hours (for
applications of around 50 concepts and pages). This answers a
commonly asked question: how much additional work there is in
creating an adaptive versus a non-adaptive information website.

4. OPEN CORPUS ADAPTATION IN GALE
A serious limitation in adaptive systems to date is that the
adaptation is designed (or at least stored) in one place and the
adaptive application must be used on a single server. Using the
GRAPPLE authoring tools concepts can be associated with
resources (files/pages) from all over the Web, and using the
GRAPPLE User Model Framework (GUMF) different adaptive
applications can share user model information.

The goal of open corpus adaptation in GALE is to allow all
relevant conceptual information (the GALE DM) to be stored
outside the GALE server, anywhere on the Web. When this is
done different applications on different GALE servers can use the
same concepts. To reach this goal a new DM service has been
developed. The DM for a whole application can be stored in a
single file on any website, or the DM part for a single concept can
be stored in a file that contains that concept and possibly also an
associated page. Our illustration of the open corpus adaptation
model in GALE shows some GAM code that is just like what the
GRAPPLE authoring tools already produce. So it is only a small

step to make these authoring tools produce the open corpus
material instead of sending it to a central GALE server.

The open corpus DM service retrieves a DM concept and page
according to the following scheme:

1. Load the resource specified by the URL. The resource is
assumed to be HTML or XHTML.

2. Scan the page for the ‘gale.dm’ meta element (<meta name=
’gale.dm’ content=’… …’ />) and use its content in step (3).

3. If the content is a ‘redirect’ instruction (example:
‘redirect:elearning.xhtml’), use the specified relative URL to
continue from step (1).

4. The content is interpreted as DM information stored in the
GAM format. Multiple concepts may be described in the
GAM code of a single file (even a complete application).
Concept names are relative to the URL of the file containing
the GAM.

5. If present, return the concept DM for the originally requested
concept. If the concept DM does not already contain a
resource attribute, it will be generated to point to the original
resource specified by the URL.

The resource associated with the concept is then retrieved by the
LoadProcessor in the usual way (looking at the resource attribute).

Below is an example http://gale.win.tue.nl/elearning.xhtml with
the following content8:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns=http://www.w3.org/1999/xhtml
 xmlns:gale="http://gale.tue.nl/adaptation">
 <head>
 <meta name="gale.dm" content="
 { #[visited]:Integer `0` {
 event `if (${#suitability} && ${#read} < 100) #{#read, 100};
 else if (!${#suitability} && ${#read} < 35) #{#read, 35};`}
 #knowledge:Integer !`GaleUtil.avg(new Object[]
 {${<=(parent)#knowledge},${#read}}).intValue()`
 #[read]:Integer `0`
 #suitability:Boolean `true`
 event `#{#visited, ${#visited}+1};` } " />
 </head>
 <body>
 <p>This page is a placeholder for the elearning concept.</p>
 </body>
</html>

This concept has GAM code that states how the persistent
attributes visited and read are updated and how the volatile
attributes knowledge and suitability are calculated. Clearly
authoring only becomes feasible if templates with such code are
made available (so authors need not study GAM). Fortunately the
example above can already be used as such a template and the
templates can be offered on (and used from) any website to be
used in adaptive applications on any other website. Another page
can “inherit” this adaptation (GAM) code as follows:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns=http://www.w3.org/1999/xhtml
 xmlns:gale="http://gale.tue.nl/adaptation">
 <head>
 <meta name="gale.dm" content=

8 To improve readability we have used && instead of

&&: and < instead of <

70

 "{->(extends) http://gale.win.tue.nl/elearning.xhtml}" />
 </head>
 <body>
 <p>This page uses the elearning template.</p>
 </body>
</html>

When a whole application domain is stored in a single file the
“meta” element for the concepts/pages would look like:

<meta name=’gale.dm’ content=’redirect:course.gam’ />

and the file “course.gam” might have contents like:

welcome.xhtml {
 ->(extends)http://gale.win.tue.nl/elearning.xhtml
 ->(extends)layout.xhtml
 <-(parent)gale.xhtml
 <-(parent)gat.xhtml
}
gale.xhtml {
 ->(extends)welcome.xhtml
 ->(parent)welcome.xhtml
}
gat.xhtml {
 -> (extends)welcome.xhtml
 ->(parent)welcome.xhtml
}
layout.xhtml {
 #layout:String `
 <struct cols="250px;*">
 <view name="static-tree-view" />
 <struct rows="60px;*;40px">
 <view name="file-view" file="gale:/header.xhtml" />
 <content />
 <p><hr />Next suggested concept to study:
 <view name="next-view" /></p>
 </struct>
 </struct> `
}

We plan to soon offer the GRAPPLE authoring tools to generate
the open corpus format so that authors can develop and publish
adaptive hypermedia information of which the adaptive behavior
can be used when served through different GALE servers (to
different users).

5. DISCUSSION (AND RELATED WORK)
Transforming a document is one of GALE's core functions. Since
GALE mostly works on HTML and XHTML content, an obvious
question would be why GALE does not use XSLT to transform
these documents. The approach GALE uses to adapt documents
(using processors and in the case of XML, modules for each
element) might seem unnecessarily complicated.

Furthermore, the idea of using Java code inside an HTML or
XHTML page is also not new. Many techniques exist that allow
part of a page to be dynamic, like JSP, Facelets9, Velocity10 and
many more.

9 See java.net/projects/facelets for more information.
10 See velocity.apache.org for more information.

Before going into detail on the various options for processing
XML and XHTML, consider that the notion of a processor as an
object that transforms a resource into something more suitable for
the user is more generic than XSLT, JSP, etc.. A processor can
use the HttpServletRequest to obtain, modify and generate any
form of output. The input and output of a processor can be as
generic as the Java InputStream and OutputStream. Different
processors can be chained to reuse functionality. GALE is not
bound to XML to perform adaptation (or to any single format for
that matter).

The XMLProcessor provides the main logic behind content
adaptation in GALE. From a processing point of view, a better
name might have been the DOMProcessor since it uses an in-
memory DOM tree to perform adaptation (vs. SAX processing). A
similar approach to processing can be found as early as AHA!
version 2 (2002) [2]. At that time XML (1998), XHTML (2000)
and XSLT (1999) were all fairly new technologies. The HTML
handler in AHA! 2 used the Java Spring HTML parser and would
perform adaptation on HTML independently of any XML or
XHTML processing facility in AHA!. Building an in-memory
DOM tree from an XHTML document was similar to the HTML-
handler way of processing.

GALE has its roots in AHA!. Over the course of almost a decade
the goal has always been to make an adaptation engine that is as
generic (and extensible) as possible, while still maintaining
simplicity, performance and ease of authoring. Where possible
existing open source technologies have been used, like Tomcat,
dom4j, Tagsoup, Spring, Hibernate, Shibboleth, etc. For adapting
XML writing modules that adapt specific elements was found to
be a very flexible approach. Adding adaptation to non-HTML
formats such as X3D and SMIL is very straightforward.

As GALE is a fully modular and highly configurable system, we
envision new ways of adapting information access in conjunction
with GALE. With the current processors and modules for instance
we cannot yet realize a real recommender system or an adaptive
search facility, whether it be content-based or collaborative. The
guided tour (using the “next” view) shows that adding new views
to GALE are the first step towards search and recommendations.

People sometimes ask (as they did about AHA!) how GALE
compares to some other adaptive hypermedia tool or application,
and how good the adaptation is (for instance in terms of learning
outcome when used for an adaptive course). These questions are
about as meaningful as asking how good websites served by the
Apache server are when compared to websites on for instance
Microsoft Web Server. GALE is a generic and general purpose
adaptation platform. Its adaptation is as good as what its users
(authors) create. The strength of GALE compared to other
adaptive hypermedia systems is that it aims to be able to emulate
all of them (because the code used in GALE expressions and
statements is arbitrary Java code). Current limitations in GALE
are that 1) the code runs in a sandbox environment which prevents
access to the full (Tomcat) server functionality (for security
reasons) and that 2) we currently do not allow adaptation code for
a user to access other users’ user models (for privacy reasons).
GALE can handle group adaptation but this is currently not used
so as to ensure that we respect all users’ privacy concerns.
Defining a group entity (in addition to the user entity) is certainly
possible. An entity can be associated with any number of other
entities (and rules can update the other entity user models). Using
this to implement collaborative filtering is still future work.

71

6. CONCLUSIONS
With the GALE adaptation engine we try to offer virtually all
possible forms of adaptation for hypermedia applications (for
now, based on individual user models). We have explained the
architecture of GALE and stressed the genericity and
extensibility. We hope to have struck the right balance between
showing some concrete constructs and examples that can be
realized in GALE and not suggesting that GALE might be limited
to what we have shown.

We have deliberately not shown the authoring tools (described in
[10]). These tools make a “default” type of adaptive application
easy to design, but although a lot of GALE functionality can be
tapped into through these tools, describing how to achieve this
would be a complete paper on its own.

Adaptive hypermedia systems are typically limited to a single
type of application and are also limited to “local” applications.
GRAPPLE already allows the use of an adaptive application from
within different Learning Management Systems, and sharing user
model information through a common UM framework. But GALE
adds the ability of using decentralized applications through open
corpus adaptation. And this was added together with the ability to
reuse adaptation templates so authors can use open corpus
adaptation without needing to write (GAM) adaptation code.

The proof of the pudding is in the eating. In 2006 we explained
AHA! version 3 through a paper that was itself adaptive [4]. For
the GRAPPLE project (including GALE and the authoring tools)
we also have an online adaptive description (tutorial) available, at
http://gale.win.tue.nl/. We have not made this paper adaptive
because an adaptive description of GALE would inevitably use
only a small fraction of GALE’s functionality, possibly
suggesting that GALE applications should all be similar to that
paper. Although GALE offers many adaptation possibilities we do
not advocate using many adaptation possibilities in a single
application. All reasonable and usable adaptive applications use
adaptation cautiously and thus sparingly in order to avoid turning
a usable information site into an unusable flashy adventure game.
Our experiments with student-generated applications have
(informally) shown that defining and implementing adaptation in
a variety of adaptive applications is relatively straightforward and
does not take an inordinate amount of effort and time.

Besides working on novel ideas for extensions (like search and
recommendations) we plan on using GALE for the delivery of
more adaptive courses, and specifically on including adaptation in
courses based on user performance in other (earlier) courses, in
order to improve the long term study performance of our bachelor
and master students.

Acknowledgements
We wish to thank the European Commission, project 215434
(GRAPPLE) for their financial support.

References
[1] Abel, F., Henze., N., Herder, E., Krause, D., Interweaving

Public User Profiles on the Web, In Proceedings of UMAP
2010, User Modeling Adaptation and Personalization, LNCS
6075, pp. 16-27, Springer, 2010.

[2] De Bra, P., Aerts, A., Smits, D., Stash, N., AHA! Version 2.0,
More Adaptation Flexibility for Authors. Proceedings of the
AACE ELearn’2002 conference, pp. 240-246, 2002.

[3] De Bra, P., Santic, T., Brusilovsky, P., AHA! meets Interbook
and more…, Proceedings of the AACE ELearn 2003
Conference, pp. 57-64.`, 2003.

[4] De Bra, P., Smits, D., Stash, N., The Design of AHA!,
Proceedings of the seventeenth ACM Conference on
Hypertext and Hypermedia, pp. 133-134, 2006, with adaptive
version at http://aha.win.tue.nl/ahadesign/.

[5] Brusilovsky, P., Methods and techniques of adaptive
hypermedia, User Modeling and User Adapted Interaction,
Vol. 6, pp 87-129, Kluwer Academic Publishers, 1996.

[6] Brusilovsky, P., Adaptive Hypermedia, User Modeling and
User Adapted Interaction, Vol. 11, pp 87-110, Kluwer
Academic Publishers, 2001.

[7] Brusilovsky, P., Eklund, J., Schwarz, E., Web-based
education for all: A tool for developing adaptive courseware.
Computer Networks and ISDN Systems (Proceedings of the
7th Int. World Wide Web Conference, 30 (1-7), pp. 291-300,
1998.

[8] Bush, V., As We May Think, The Atlantic Monthly, July
1945.

[9] Cristea, A.I., Smits, D., Bevan, J., Hendrix, M. LAG 2.0:
Refining a Reusable Adaptation Language and Improving on
Its Authoring, Proceedings of the 4th European Conference
on Technology Enhanced Learning: Learning in the Synergy
of Multiple Disciplines, Springer LNCS 5794, pp. 7-21,
2009.

[10] Hendrix, M., Cristea, A.I., Design of the CAM model and
authoring tool. A3H: 7th International Workshop on
Authoring of Adaptive and Adaptable Hypermedia
Workshop, 4th European Conference on Technology-
Enhanced Learning, 2009.

[11] Henze, N., Adaptive hyperbooks: Adaptation for project-
based learning resources. PhD Dissertation, University of
Hannover, 2000.

[12] Knutov, E., Bra, P.M.E. de, Pechenizkiy, M., AH 12 years
later: a comprehensive survey of adaptive hypermedia
methods and techniques. New Review of Hypermedia and
Multimedia, 15(1), 5-38, 2009.

[13] Ploum, E., Authoring of adaptation in the GRAPPLE project,
Master Thesis, Eindhoven University of Technology.
(available at http://alexandria.tue.nl/extra1/afstversl/wsk-
i/ploum2009.pdf), 2009.

[14] Van der Sluijs, K., Hidders, J., Leonardi, E., Houben, G.J.,
GAL: A Generic Adaptation Language for describing
Adaptive Hypermedia, Proceeding of the International
Workshop on Dynamic and Adaptive Hypertext: Generic
Frameworks, Approaches and Techniques (DAH’09) in
conjunction with ACM Hypertext 2009, July 2009.

[15] Van der Sluijs, K., Höver, K., Integrating adaptive
functionality in a LMS, International Journal of Emerging
Technologies in Learning (IJET), Vol. 4, nr. 4, pp. 46-50,
2009.

[16] De Troyer, O., Kleinermann, F., Pellens, B., Ewais, A.,
Supporting Virtual Reality in an Adaptive Web-based
Learning Environment, Learning in the Synergy of Multiple
Disciplines, In proceedings of the 4th European Conference
on Technology Enhanced Learning (EC-TEL), LNCS 5794,
pp. 627-632, Eds. Cress. U. et al, Publ. Springer, ISBN 978-
3-642-04635-3, Nice, France, 2009.

72

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

