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Samenvatting

De decompositie van relaties is het belangrijkste onderwerp van de studie

van het Relationele Gegevensbank Model geweest, gedurende de jongste

vijftien jaar. De motivatie voor de decompositie is van tweeërlei aard:

1. Enkele technische argumenten zijn:

• Decompositie vermindert redundantie: de informatie wordt niet

verscheidene malen herhaald in dezelfde (of andere) relatie(s). Hier-

door verminderen ook de “update”-anomalieën: als de informatie

gewijzigd wordt dient ze maar eenmaal gewijzigd te worden.

• Decompositie verbetert de efficiëntie van het opvragen en wijzigen

van informatie: doordat de relaties kleiner worden (door herhalin-

gen te vermijden) verloopt het opzoeken sneller.

• Kleinere relaties kunnen gemakkelijker verspreid worden over ver-

scheidene computers dan één grote relatie.

2. Enkele gebruiker-georienteerde of semantische argumenten zijn:

• Kleinere relaties zijn gemakkelijker te begrijpen (onder andere door-

dat ze betekenisvolle namen kunnen hebben).

• Het formuleren van opvragingen en wijzigen van de informatie is

eenvoudiger, doordat de overbodige informatie (voor een bepaalde

opvraging of wijziging) in andere relaties zit en dus niet mee moet

worden opgegeven.

Deze lijst is vanzelfsprekend niet volledig.

De decompositie-theorie heeft zich geconcentreerd op de vertikale decom-

positie van relaties. Het belangrijkste hulpmiddel voor deze decomposi-

tie vormt het bestaan van (semantische) beperkingen die moeten voldaan

zijn in de databank (en dus ook in het deel van de “echte wereld” dat

wordt voorgesteld door de databank). De studie van deze beperkingen
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is aangevat door Codd [8], met de introductie van functionele afhanke-

lijkheden (fa’s). In de vijftien jaar sinds dit eerste werk, zijn vele andere

beperkingen bestudeerd, die (ruwweg) kunnen worden onderverdeeld in

twee klassen: beperkingen die de structuur van de gegevensbank beschrij-

ven, zoals meerwaardige afhankelijkheden (mwa’s) [19] en “join”-afhanke-

lijkheden (ja’s) [25] (en vele andere), en beperkingen op de data zelf, zoals

de inclusie-afhankelijkheden [4] en de partitie afhankelijkheden [9].

De fa’s zitten eigenlijk in beide klassen: het zijn beperkingen op de data die

gemakkelijk gebruikt kunnen worden om de structuur van de gegevensbank

te beschrijven (en haar mogelijke decomposities).

De praktische waarde van de studie van beperkingen en decomposities

hangt sterk af van de aanwezigheid van deze beperkingen in de “echte

wereld”. De functionele afhankelijkheid is de eenvoudigste beperking (met

gemakkelijke en goede eigenschappen), maar het is ook de sterkste beper-

king, waardoor de kans dat ze in de echte wereld voorkomt erg klein is.

De meerwaardige afhankelijkheid en de join-afhankelijkheid zijn zwakker

(en dus komen ze waarschijnlijk vaker voor,) maar ze hebben meer in-

gewikkelde eigenschappen die moeilijker te begrijpen zijn. De vertikale

decompositie, gebaseerd op fa’s, mwa’s en ja’s, gebruikt een join-operator

om de originele (grote) relatie te reconstrueren uit de kleine relaties die

het resultaat zijn van de decompositie. Deze decompositie bevredigt tech-

nische en semantische behoeften: ze genereert kleinere relaties met minder

redundantie, en ze scheidt onafhankelijke delen van de informatie.

In deze thesis behandelen we vooral functionele afhankelijkheden. Omdat

dit de eenvoudigste beperkingen zijn worden ze het meest gebruikt om

relaties te decomponeren. Maar omdat ze ook de sterkste beperkingen

zijn is er nood aan een mechanisme om (een klein aantal) uitzonderingen

toe te laten op deze beperkingen. De vertikale decompositie laat geen

uitzonderingen toe. Daarom introduceren we een andere decompositie-

methodologie: de horizontale decompositie. Deze decompositie voorziet

in een behandeling van uitzonderingen op fa’s die ingebouwd is in het

databank-schema, dus zonder implementatie-afhankelijke technische truuks.

De horizontale decompositie voorziet meer in technische behoeften dan in

semantische. De uitzonderingen op sommige functionele afhankelijkheden
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worden verwijderd uit het “belangrijkste” deel van de relatie, en opge-

slagen in andere (meestal kleine) relaties. In het “grotere” deel gelden de

functionele afhankelijkheden (hoewel ze niet gelden in de gegevensbank als

geheel, en ook niet in de echte wereld), en daardoor kan dit grote deel ver-

tikaal gedecomponeerd worden. Dit betekent dat de technische voordelen

van de vertikale decompositie kunnen bereikt worden, zelfs in gegevens-

banken waar de vertikale decompositie (alleen) onmogelijk is (omdat de

benodigde beperkingen niet gelden). De betekenins van de kleinere relaties

is soms minder duidelijk, doordat verwante informatie wordt opgeslagen

in verschillende relaties, terwijl sommige onafhankelijke informatie (over

de uitzonderingen) in eenzelfde relatie zit.

Anderzijds biedt de horizontale decompositie een nieuwe semantische mo-

gelijkheid: door access-permissies te geven of te ontzeggen aan sommige

gebruikers, over de hele relatie of de deelrelaties, kan men hen eenvoudig

de mogelijkheid geven of ontzeggen om uitzonderingen te kreëren en te

verwijderen. Hiervoor is dus geen nieuwe privilege-structuur nodig.

Omdat het bestaan van fa’s in de “echte wereld” dikwijls verband houdt

met het bestaan van andere fa’s, bestuderen we dit verband. Dit leidt

tot een hierarchie van klassen van nieuwe beperkingen, die we partiële

implicaties tussen functionele afhankelijkheden noemen. De horizontale

decompositie kan gebaseerd worden op deze nieuwe beperkingen zonder

de mogelijkheid te verliezen om uitzonderingen op willekeurige fa’s te be-

handelen.

De horizontale decompositie introduceert een nieuwe soort update-ano-

malie: door informatie toe te voegen, te verwijderen of te veranderen kan

men uitzonderingen kreëren of verwijderen. Doordat de uitzonderingen

opgeslagen zijn in een afzonderlijke relatie (of relaties) kan een update de

verplaatsing van data veroorzaken van een relatie naar een andere. Geluk-

kig kan dit update-probleem op efficiënte wijze opgelost worden. We geven

een polynomiaal update algoritme, dat de “inter-relationele” datatraffiek

minimaliseert.

Deze thesis is als volgt ingedeeld: in hoofdstuk 2 introduceren we de no-

taties en terminologie over het Relationele Gegevensbank Model, func-

tionele afhankelijkheden en horizontale decomposities. We stellen ook
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enkele theoretische hulpmiddelen voor die doorheen heel de thesis wor-

den gebruikt, zoals de Armstrong relaties en het conflict concept.

In hoofdstuk 3 bestuderen we de horizontale decompositie, gebaseerd op

uitzonderingen op functionele afhankelijkheden. We beschrijven de eigen-

schappen van functionele en afunctionele afhankelijkheden en we definiëren

twee Normaalvormen waarvoor we decompositie-algoritmen geven [10, 11,

23].

In de 4 daaropvolgende hoofdstukken beschrijven we hoe de klassen van

partiële implicaties tussen fa’s kunnen gebruikt worden om horizontale

decomposities te genereren. We volgen hierbij een historische aanpak: de

4 klassen van afhankelijkheden worden besproken in de volgorde waarin

ze ontwikkeld werden. Elke klasse bevat de vorige klassen als bijzonder

geval. De 4 klassen van beperkingen zijn: de “voorwaardelijk-functionele

afhankelijkheden” [13], de “opgelegd-functionele afhankelijkheden” [14], de

“functionele-afhankelijkheid-implicaties” [15] en de “functionele-afhanke-

lijkheid-verzameling-implicaties” [16]. (De benamingen zijn vertaald uit

het engels, vandaar dat ze misschien raar overkomen.)

In hoofdstuk 8 beschrijven we hoe een horizontaal gedecomponeerde data-

bank “geupdate” kan worden [17]. Een efficiënt update algoritme wordt

uitgewerkt. Een “Optimale” Normaalvorm wordt gedefiniëerd waarmee

een nog efficiënter update algoritme mogelijk is. Het genereren van deze

normaalvorm is niet veel moeilijker (i. e. polynomiaal) dan voor de nor-

maalvormen van hoofdstuk 3.

Tenslotte, in hoofdstuk 9, tonen we enkele mogelijke uitbreidingen van

de horizontale decompositie, voor de behandeling van uitzonderingen op

andere beperkingen dan fa’s.
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Chapter 1

Introduction

The decomposition of relations has been a major topic in the study of the

Relational Database Model during the last fifteen years. The motivations

for the decomposition theory are twofold:

1. Some technical arguments are:

• Decomposition reduces redundancy: the same information is not

repeated several times in the same (or other) relation(s). This also

reduces update anomalies: if the information is changed it has to

be changed only once.

• Decomposition improves query answering and updating: since the

relations contain fewer information items (by removing repetitions)

scanning relations goes faster.

• Smaller relations are easier to distribute among different computers

than one big relation.

2. Some user-oriented (or semantic) arguments are:

• Smaller relations are easier to understand (and can have meaningful

names).

• Querying and updating smaller relations requires less effort, since

irrelevant information (for some query or update) is contained in

other relations.

This is not meant to be an exhaustive list.

The decomposition theory has focused on the vertical decomposition of

relations. The main tool for this decomposition is the existence of some

semantic constraints that must hold in the database (and hence also in the

part of the “real world” represented by the database). The study of these

11



12 1. Introduction

constraints was initiated by Codd [8], with the introduction of functional

dependencies (fd’s). In the fifteen years after this first paper several other

constraints were studied, which can be divided into two classes: constraints

describing the structure of a database, such as multivalued dependencies

(mvd’s) [19] and the join dependencies (jd’s) [25] (and many more), and

constraints on the data, such as inclusion dependencies (ind’s) [4] and

partition dependencies (pd’s) [9]. The fd’s are contained in both classes:

they are constraints on the data which can be easily used to describe the

structure of the database (and its possible decompositions).

The practical importance of the study of constraints and decompositions

highly depends on the presence of these constraints in the real world. The

functional dependency is the easiest constraint (with relatively simple and

nice properties), but it also is the strongest constraint, and therefore has a

small chance of occurring in the real world. The multivalued dependency

and join dependency are weaker, (so they probably occur more frequently,)

but they have more complicated properties, which are more difficult to

understand. The vertical decomposition based on fd’s, mvd’s or jd’s uses a

join-operator for reconstructing the original (big) relation from the small

relations that are the result of the decomposition. This decomposition

serves the technical and semantic needs: it generates smaller relations

with less redundancy, and it separates independent pieces of information.

In this work, we are primarily concerned with functional dependencies.

Since these constraints are the easiest, they are the most popular con-

straints for decomposing relations. But since they also are the strongest

constraints, there is a need for a mechanism to allow (a small number of)

exceptions to these constraints. With the vertical decomposition excep-

tions are absolutely forbidden. Therefore we introduce another decom-

position methodology: the horizontal decomposition. This decomposition

provides an exception handler for fd’s, which is build into the database

scheme, rather than some technical, implementation dependent gadgets.

The horizontal decomposition serves technical needs more than semantic

needs. The exceptions to some functional dependencies are separated from

the main part of the relation, and stored in other (probably small) rela-

tions. In the main part the fd’s are satisfied (although in the database as
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a whole, and in the real world they are not), and hence this main part can

be decomposed vertically. This means that the technical advantages of

the vertical decomposition can be obtained even in databases in which the

vertical decomposition is impossible (because the necessary constraints do

not hold). The meaning of the smaller relations is sometimes less obvious,

since some related information is stored in separate relations (the excep-

tions), and some independent information (about the exceptions) is stored

in one relation.

However, the horizontal decomposition also creates a new semantic aspect:

by granting or denying access to the whole relation (or the subrelations),

one can allow some users to create or remove exceptions, and deny this

privilege to others.

Since the existence of some fd’s in the real world is often related to the

existence of some other fd’s, we also study the relationships between fd’s.

This leads to a hierarchy of classes of new constraints, which we call partial

implications between functional dependencies in general. The horizontal

decomposition can be based entirely on these new constraints (without

loosing the ability to consider exceptions to arbitrary fd’s).

The horizontal decomposition introduces a new kind of update anomaly:

by adding, deleting or modifying information one can create or remove

exceptions. Since the exceptions are stored in a separate relation (or rela-

tions) an update may cause data to be moved from one relation to another.

Fortunately this update problem can be solved efficiently. We present a

polynomial update algorithm, which minimizes the “inter-relational” traf-

fic of data.

This thesis is organized as follows. In Chapter 2, basic notations and

terminology are introduced concerning the Relational Database Model,

functional dependencies and horizontal decompositions, and some theo-

retical tools are provided, that will be used throughout the thesis, such as

Armstrong relations and the conflict concept.

In Chapter 3 we study the horizontal decomposition based on exceptions

to functional dependencies. We describe the properties of this decom-

position, and we define Normal Forms for which we give decomposition

algorithms [10, 11, 23].
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In the next 4 chapters we describe how to use a class of partial implica-

tions between fd’s for generating horizontal decompositions. We follow a

historic approach: the (growing) classes of constraints are studied in the

order in which they have been studied in the recent past. The 4 classes

of constraints are called conditional-functional dependencies (cfd’s) [13],

imposed-functional dependencies (ifd’s) [14], functional dependency impli-

cations (fdi’s) [15] and functional dependency set implications (fsi’s) [16].

In Chapter 8 we describe how to update a horizontally decomposed data-

base [17]. An efficient update algorithm is given. An Optimal Normal

Form is defined which leads to an even more efficient update algorithm,

and it is proved that generating decompositions for this normal form is

not much harder (i. e. polynomial) than for the normal forms given in

Chapter 3.

Finally, in Chapter 9 we illustrate that the horizontal decomposition can

also be used for handling exceptions to other constraints besides fd’s.



Chapter 2

Notations and Terminology

In this chapter, we first give some basic notations and terminology about

the relational database model. We then define the horizontal decompo-

sition that will be used in Chapter 3. The horizontal decomposition will

be redefined using different constraints in later chapters. We also define

Armstrong relations and show some elementary properties.

2.1 The Relational Database Model

In the relational database model [6], a database is represented by a number

of relations, which can be viewed as tables. We distinguish two aspects of

a relation:

• the relation scheme (or simply scheme) is the structure of the relation

(or the heading of the table). It is static (i. e. it does not change in

time).

• the relation instance (or simply instance) represents the data stored in

the relation at a given moment (i. e. the entries or rows of the table). It

changes as information is being added, removed or modified regularly.

We now define these notions more formally, using the notations of [24]

(with a few exceptions).

Definition 2.1 A relation scheme (or briefly a scheme) is a five-tuple

R = (Ω,∆, dom,M,SC) where

• Ω is a finite set of attributes ; the attributes are the headings of the

columns of the table;

15
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• ∆ is a finite set of domains ; each domain is a set of values which may

be infinite;

• dom is a function that associates with each attribute a domain of ∆:

dom : Ω → ∆. For each attribute, only the values of the corresponding

domain may appear in the column that is headed by that attribute;

• M is the meaning of the relation. This is an informal component of

the definition, since it refers to the real world and since we will mostly

describe the meaning in a human, natural language. In nearly all

theoretical studies (except this one) the M component of a relation

scheme has little importance. We include it in the definition of a

relation scheme since it is a fundamental time independent property of

the relation;

• SC is a set of relation (scheme) constraints or conditions. The signifi-

cance of these conditions will be explained later on when we define the

relation instances over a relation scheme in Definition 2.2.

Throughout this work, we shall use the notations of Definition 2.1 without

specifying all aspects of a relation scheme. We shall usually omit the

specification of the domains. We do not assume that each domain is

infinitely denumerable, since this is not needed in this theory. We shall

also omit the description of the meaning of a relation. To simplify this

convention, we shall usually denote a relation scheme as a two-tuple R =

(Ω, SC), which only contains a set of attributes and a set of constraints, or

as a three-tuple R = (Ω,G, SC), where G is a special part of the meaning,

called the set of goals which we shall describe later.

Definition 2.2 Let R = (Ω,∆, dom,M,SC) be a relation scheme.

• A tuple over the relation scheme R is a function t, t : Ω → ⋃

δ∈∆
δ such

that for every attribute A of Ω, t(A) ∈ dom(A).

• A relation constraint of the relation scheme R is represented by a

boolean function that associates with every set of tuples over R the

value true or false. If that function associates the value true with

a set of tuples of R, then we say that the set satisfies the relation

constraint. As we indicated in Definition 2.1 the set SC contains the

relation constraints of a relation scheme.
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• A relation instance of the relation scheme R = (Ω,∆, dom,M,SC) is

a set of tuples of R, that satisfies all the relation constraints of SC.

We denote relation instances with small letters, relation schemes with

capitals.

We represent a relation instance by a table with one column for each

attribute, and one row for each tuple. It follows from Definition 2.2 that

the order of the rows in the table is irrelevant and that all the rows of

the table are different. Also the order of the columns (together with

their heading attribute) does not influence the relation instance that is

represented.

In most abstract examples we shall use capital letters from the beginning of

the alphabet (A,B,C . . .) to denote single attributes, and capital letters

from the end of the alphabet (. . . X, Y, Z) to denote sets of attributes.

Whenever there is no ambiguity, we shall not distinguish the attribute A

from the set {A}. For sets of attributes X and Y , XY denotes the union

X ∪ Y .

Lowercase letters from the beginning of the alphabet are used to indicate

values of a domain (a, b, c . . .). Lowercase letters t, u, v . . . are used to

denote tuples.

Capitals will also be used to denote relation schemes, and lowercase letters

to denote relation instances. Usually we shall use R (resp. r) or S (resp.

s) for this purpose. Whenever possible we avoid using these two letters to

denote values or attributes.

A database (scheme) in the relational model may consist of several relation

schemes. However, we shall use only one relation scheme. This does not

mean that this work relies on the “universal relation assumption” [20].

We only study relation constraints, not “inter-relation” constraints.

Definition 2.3 Let R = (Ω,∆, dom,M,SC) be a relation scheme, let r

be a relation instance of R, let t be a tuple of r, and let X ⊆ Ω.

• The projection of t onto X, denoted t[X], is obtained by restricting t

to the attributes of X.

• The projection of r onto X, denoted πX(r) is defined as {t[X] | t ∈ r}.
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• The projection of R onto X, denoted πX(R) is the scheme for which

the instances are the projections of the instances of R onto X. The

reader is invited to describe this scheme as a five-tuple.

We shall also call the projection of t onto X the X-projection of t, or also

the X-value of t.

Definition 2.4 Let r be an instance of R. Let f be a (computable)

function on instances of R, which maps tuples to the boolean values true

and false.

• The selection for f of r is the set of all tuples of r which f maps to

true for r. It is denoted σf (r).

• The selection for f of R, σf (R), is the scheme for which the instances

are the selections for f of the instances of R. The reader is invited to

define this scheme as a five-tuple.

This definition differs from the “classical” definitions of [22, 24, 26]. The

most general definition appears in [24] and still requires f to be a function

on tuples, not on instances.

The term restriction is often used in literature, instead of selection. It

is sometimes also used to denote the projection. To avoid confusion we

never use the term restriction in this work.

Definition 2.5 Let r and s be instances of R and S respectively, and let

R and S have the same Ω, ∆ and dom.

• The union of r and s, r ∪ s, is the set-theoretic union of r and s.

• The difference of r and s, r− s, is the set-theoretic difference of r and

s.

• The union of R and S, R ∪ S, is a scheme for which the instances are

the union of an instance of R and an instance of S.

• The difference of R and S, R− S, is a scheme for which the instances

are the difference of an instance of R and an instance of S.

The reader is invited to define R ∪ S and R− S as a five-tuple.
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2.2 Constraints and Horizontal Decompositions

In literature [7, 19, 25] many different kinds of constraints have been de-

fined, and have mainly been used to develop the decomposition theory

which is based on the projection and the join operators. The first con-

straint that was studied is the functional dependency, and is the constraint

that will be investigated in this thesis. The decomposition theory, which

we call the “horizontal” decomposition, is based on the selection and the

union operators.

Definition 2.6 Let R be a relation scheme, X,Y ⊆ Ω.

• A relation instance r of R satisfies the functional dependency (fd)

X→ Y iff ∀t1, t2 ∈ r : t1[X] = t2[X] ⇒ t1[Y ] = t2[Y ].

• The scheme R satisfies X→ Y iff all the instances of R satisfy X→ Y .

Instead of “r satisfies X→ Y ” we often say X→ Y holds in r.

The functional dependency is very easy to understand, and has (as we shall

see) some very nice properties. However, it is a rather severe constraint, for

which one usually must allow a few exceptions. At the end of this chapter

we give a (nontrivial) example of a relation scheme which “almost” satisfies

a number of fd’s. This example will be used and extended throughout the

thesis, to illustrate other constraints.

The main purpose of the horizontal decomposition is to “separate” the

exceptions to an fd from the remaining part of a relation. Therefore we

must first define an operator which performs this separation.

Definition 2.7 Let R be a relation scheme, r an instance of R, X ⊆ Ω.

• A set of tuples, s, s ⊆ r, is called X-complete iff the tuples belonging to

s all have other X-projections than those belonging to r−s. Formally:

∀t1 ∈ s, t2 ∈ s− r : t1[X] ̸= t2[X].

• s is said to be X-unique iff all tuples of s have the same X-value, i. e.

∀t1, t2 ∈ s : t1[X] = t2[X].

One can easily see that the empty set of tuples is X-complete for every set

X of attributes of R. In the sequel we shall often use the term X-value

to denote an “X-complete X-unique set of tuples” as well as for the

X-projection of a tuple, if no confusion is possible.
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Definition 2.8 Let R = (Ω,∆, dom,M,SC) be a scheme. Let X,Y ⊆ Ω.

• For every instance r of R, the selection for X→ Y of r, σX→Y (r), is

the largest X-complete subset (of tuples) of r in which X→ Y holds.

• The selection for X → Y of R, σX→Y (R), is a scheme R1 = (Ω,∆,

dom,M1, SC1). The calculation of SC1 will be described in Section 3.2.

SC1 contains X → Y of course. M1 explains that all instances of R1

must be the selection for X→ Y of the instances of R.

When decomposing a relation horizontally for eliminating exceptions to

a functional dependency, we want to keep as many tuples in the “good”

subrelation as possible, without splitting up X-values. Therefore we select

the largest X-complete set of tuples in which X→ Y holds. Whether the

fd X→ Y holds for some X-value does not depend on the tuples having

other X-values. So one can obtain the largest X-complete set of tuples

satisfying X → Y by taking all tuples such that X → Y holds for their

X-value. It is clear that this selection operator is computable, hence it

satisfies Definition 2.4. Note however that one cannot decide whether a

tuple should be included in the selection without considering the instance

to which the tuple belongs. Hence our selection operator does not satisfy

the definitions of [22, 24, 26].

Note that although the largest X-complete (sub)set of tuples satisfying

X → Y is unique, the largest (sub)set of tuples satisfying X → Y is not

necessarily unique. This ambiguity is the reason why we use X-complete

sets of tuples for defining the horizontal decomposition.

Definition 2.9 A goal is an ordered pair of sets of attributes, denoted

X→? Y to indicate that this is an fd with possible exceptions. The hor-

izontal decomposition of a scheme R, according to the goal X→? Y is the

ordered pair (R1, R2), where R1 = σX→Y (R) and R2 = R− σX→Y (R).

The goals, associated with a relation scheme, indicate that one would

like to have the “corresponding” fd’s in the scheme, but that there may

be exceptions to these fd’s. Goals are not constraints, since they do not

put any restriction on the acceptance of sets of tuples as instances. The

number of exceptions to the fd’s may be very large (if the goals are not

well chosen). However, the goals are part of the relation scheme, since
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they indicate how to decompose the scheme horizontally. Therefore we

include the set of goals G of a scheme R in the meaning M . Since this

is the only part of the meaning that is of fundamental importance in this

work, we often denote a scheme as a three-tuple R = (Ω,G, SC).

By decomposing R horizontally we obtain a subscheme R1 in which an

additional fd X → Y holds. In the other subscheme R2 we also have a

new constraint: for every X-value (in every instance of R2) there must

be at least two different Y -values. This constraint is called an afunctional

dependency.

Definition 2.10 Let R be a relation scheme, X,Y ⊆ Ω.

• A relation instance r of R satisfies the afunctional dependency (ad)

X ̸̸→ Y iff ∀t1 ∈ r, ∃t2 ∈ r : t1[X] = t2[X] ∧ t1[Y ] ̸= t2[Y ].

• The scheme R satisfies X ̸̸→ Y iff all the instances of R satisfy X ̸̸→ Y .

Note that X ̸̸→ Y holds in the empty instance, for all X,Y ⊆ Ω.

Remark 2.1 Using definitions 2.6, 2.7 and 2.10 one can easily prove that

the following ways of defining fd’s and ad’s are all equivalent:

• An fd X → Y holds in r iff every X-unique set of tuples of r is also

Y -unique.

• An fd X → Y holds in r iff every X-complete X-unique set of tuples

of r is also Y -unique.

• An fd X→ Y holds in r iff every Y -complete set of tuples of r is also

X-complete.

• An fd X→ Y holds in r iff ∀t1, t2 ∈ r : t1[Y ] ̸= t2[Y ] ⇒ t1[X] ̸= t2[X].

• An adX ̸̸→ Y holds in r iff noX-complete set of tuples of r is Y -unique.

• An ad X ̸̸→ Y holds in r iff the fd X → Y does not hold in any

X-complete set of tuples of r.

Usually the set of constraints SC of a relation scheme R only consists of

a set F of fd’s and a set A of ad’s. Hence we denote a relation scheme as

R = (Ω,G,F ∪ A). (In Chapter 4, we define new classes of constraints,

changing the notation of SC accordingly).

The subscheme for the exceptions can be redefined as follows, using the

definition of ad’s:
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Definition 2.11 Let R be a relation scheme, X,Y ⊆ Ω.

• For every instance r of R, the selection for X ̸̸→ Y of R, σX ̸̸→Y (r), is

the largest X-complete subset of r in which X ̸̸→ Y holds.

• The selection for X ̸̸→ Y of R, σX ̸̸→Y (R), is a scheme R2 = (Ω,∆,

dom,M2, SC2). The calculation of SC2 will be described in Section 3.2.

SC2 contains X ̸̸→ Y . M2 explains that all instances of R2 must be

the selection for X ̸̸→ Y of the instances of R.

The reader will note that the horizontal decomposition of R according

to X→? Y is the ordered pair (R1, R2), where R1 = σX→Y (R) and R2 =

σX ̸̸→Y (R).

2.3 Implications and Contradictions between Con-

straints

Let R = (Ω,∆, dom,M,SC) be a relation scheme. Although SC specifies

which sets of tuples over Ω are to be called instances of R, it is possible

that all instances of R satisfy some other constraints as well. This leads

to the following definitions:

Definition 2.12 Let R = (Ω,∆, dom,M,SC) be a relation scheme.

• If all (finite or infinite) instances r of R satisfy a constraint sc, we say

that sc is a consequence of SC, or that SC implies sc. We denote this

by SC |= sc.

• If SC implies all the constraints of a set SC ′ we also say that SC

implies SC ′, and denote this by SC |= SC ′.

• The set of all constraints (of the same “class” as those of SC) that are

implied by SC is denoted by SC∗, and is called the closure of SC.

We do not distinguish between finite and unrestricted implication since

they coincide for the classes of constraints we consider in this work.

Definition 2.13 Let R = (Ω,∆, dom,M,SC) be a relation scheme. Let

IR be a set of inference rules for constraints, i. e. a set of rules to generate

new constraints from a given set of constraints.
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• If a constraint sc can be generated from SC using the rules of IR we

say that sc is inferred from SC by IR, or that SC infers sc. We denote

this by SC ⊢ sc. (The set of rules IR will always be clear, therefore

we do not include it in the notation.)

• The set of all constraints that can be inferred from SC is denoted by

SC+, and is called the saturation of SC.

• If all constraints that can be inferred from an arbitrary set SC of

constraints by IR also are consequences of SC, we say that the set IR
of rules is sound.

• If all constraints (of a certain “class”) that are consequences of an

arbitrary set SC of constraints can be inferred from SC by IR, we say

that the set IR of rules is complete for this class of constraints.

A major part of this thesis is devoted to proving that sets of inference

rules for different classes of constraints are sound and complete for these

classes. We have to restrict ourselves to certain classes of constraints,

since it sometimes is possible that a set of constraints implies a constraint

which has not been defined. For instance, the constraint “every employee

has only one manager” implies “the number of managers is less than or

equal to the number of employees”. The first constraint is an fd, whereas

the second one is not.

Proving the soundness of a set of inference rules means proving that

SC+ ⊆ SC∗ for every set SC, whereas proving the completeness means

proving SC∗ ⊆ SC+.

The presence of several constraints (of different kinds) in a relation scheme

involves the danger that the constraints may be in contradiction with each

other. In such a case there are no possible database instances that satisfy

all constraints. In general, i. e. when all kinds of constraints are allowed,

this problem is undecidable. When only fd’s and ad’s are considered (and

also with the other constraints which we shall define later) the constraints

cannot be in contradiction with each other. However there is a weak kind

of contradiction that turns out to be a useful tool in the next chapters.

Definition 2.14 Let R = (Ω,∆, dom,M,SC) be a relation scheme. The

set SC of constraints is said to be in conflict if the empty set of tuples
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over Ω is the only instance of R, i. e. it is the only set of tuples in which

all the constraints of SC hold.

An easy example of a set of fd’s and ad’s in conflict is {A→ B,A ̸̸→ B}.
Even only one ad can be in conflict: A ̸̸→ A only holds in an empty

instance.

Defining a database with only one (empty) instance certainly is useless.

Therefore we shall proceed as follows, for every class of constraints we

define: we first show a way to detect conflict, and we then prove the

soundness and completeness of a set of inference rules, only for sets of

constraints which are not in conflict.

2.4 Armstrong Relations

In literature [1, 18] a special instance has been studied, which turns out to

be very useful in the proofs of several theorems in the following chapters.

Definition 2.15 Let SC be a set of constraints (of a given class) over a

set Ω of attributes. An Armstrong relation for SC is an instance in which

only the constraints of SC hold, (together with their consequences), but

no other constraints of the same class.

In literature the existence of Armstrong relations has been investigated

for different classes of constraints. It has been proven (e. g. [21]) that

for some classes (e. g. functional dependencies and inclusion dependencies

together) there are no Armstrong relations. For the purpose of this thesis

we only need Armstrong relations for fd’s. However, for the theorems we

need instances with a somewhat stronger property.

Definition 2.16 Let F be a set of fd’s over a set Ω of attributes. A strong

Armstrong relation for F is an instance in which all the fd’s of F hold,

and also their consequences, but in which for every other fd X → Y the

“corresponding” ad X ̸̸→ Y holds.

Note that strong Armstrong relations (for fd’s) are Armstrong relations

for fd’s.
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Note also that strong Armstrong relations for fd’s are quite different from

Armstrong relations for fd’s and ad’s together (which also exist).

In the sequel we shall only use strong Armstrong relations, but we shall

usually omit the word “strong”. We describe how to generate Armstrong

relations below, and if we refer to Armstrong relations in the sequel, we

actually refer to this construction.

Theorem 2.1 For every set F of fd’s there exists a strong Armstrong

relation.

Proof We consider a construction similar to that of [18]. For every set

of attributes X ⊆ Ω consider the instance r(X) =

X Ω−X

0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1

where X = {A | F |= X → A}. (The problem of determining whether

F |= X → A is very well known [22, 24, 26]). One can easily see that F
holds in r(X) and if F ̸|= X → Y then X → Y does not hold in r(X).

Hence X ̸̸→ Y holds, since there is only one nonempty X-complete set of

tuples in r.

Let r1 and r2 be sets of tuples over Ω. The direct product of r1 and r2,

r1⊗ r2, is constructed as follows: if (a1, . . . , an) ∈ r1 and (b1, . . . , bn) ∈ r2
then r1 ⊗ r2 contains ((a1, b1), . . . , (an, bn)). One can easily see that an

fd holds in r1 ⊗ r2 if it holds in both r1 and r2, and that an ad holds in

r1 ⊗ r2 if it holds in r1 or r2 (or in both). Consider

Arm(F) =
⊗

X⊆Ω
r(X)

In Arm(F), F holds since it holds in all r(X). For every fd X→ Y that

is not a consequence of F X ̸̸→ Y holds in r(X), hence also in Arm(F).

To illustrate the use of Armstrong relations we show that ad’s have no

influence on the “implication problem” for fd’s, and we indicate how to

detect conflict for fd’s and ad’s.

Theorem 2.2 If F ∪ A is not in conflict then F ∪ A |= X → Y iff

F |= X→ Y .
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Proof The if-part is trivial, since F ⊆ F ∪A.

For the only-if-part, suppose F ∪A |= X→ Y . In Arm(F), F holds and

if an ad T ̸̸→ U of A does not hold then F |= T → U by Theorem 2.1, and

F ∪ A would have been in conflict, a contradiction. Hence F ∪ A holds

in Arm(F). Hence X → Y holds in Arm(F) and by Theorem 2.1 this

implies that F |= X→ Y .

Theorem 2.3 F ∪A is in conflict iff for some X ̸̸→ Y of A, F |= X→ Y

holds.

Proof The if-part is trivial.

For the only-if-part, suppose that F ∪A is in conflict and hence the empty

instance is the only instance in which F ∪ A holds. Hence in Arm(F),

(which is not empty,) in which F holds, some ad X ̸̸→ Y of A does not

hold. By Theorem 2.1 this implies that X→ Y holds in Arm(F) and that

F |= X→ Y .

This theorem suggests a very important property of ad’s: ad’s do not

“work” together. For instance, if A→ B and B → C hold then A→ C

holds by transitivity. For ad’s no such rule can exist: if for every A-

value there are at least two B-values, and for every B-value at least two

C-values, then it is still possible that not for every A-value there are at

least two C-values.

From Theorem 2.3 one can easily deduce the following algorithm to detect

conflict:

Algorithm 2.1 Conflict Detection

Input: F ,A, a set of fd’s and a set of ad’s.

Output: true or false.

Method:

for each T ̸̸→ U in A do

if F |= T → U

then return(true) { and exit }
od

return(false) { only reached if for-loop is done }
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2.5 Example

We now present a nontrivial example of a relation scheme and instance,

which we shall use throughout the thesis for illustrating the different

classes of constraints, and the horizontal decompositions they lead to.

Example 2.1 Consider a relation scheme STAFF = (Ω,∆, dom,M,SC),

where

• Ω = {emp, job,man, sal, dep, div}.
• ∆ and dom are left to the reader.

• M is the meaning of STAFF . This says that STAFF describes the

staff of a large company. This company has several divisions, each

divided into a number of departments. The work is done by employees,

who have one or more jobs, managers and salaries. Also part of the

meaning are the goals, which we shall describe later.

• SC = {emp job→ sal}. There is only one constraint, which says that

every employee earns only one salary for each of his jobs.

The classical idea of a relation scheme would certainly include the fd

emp → job man sal dep div, which makes emp a key. However, one

can easily see that in any large company there will be employees with

more than one job, or who have two managers, or work in more than one

department, or even in more than one division.

Having functional dependencies is very practical for decomposing a rela-

tion vertically, but our example shows that the fd’s just do not hold in the

real world. Therefore we introduce a set of goals G, which represents fd’s

for which we expect the number of exceptions to be small (although this

assumption has no influence on the horizontal decomposition):

G = {emp→? job man sal dep div, man→? div}.

The choice of these goals is arbitrary. One can find other plausible goals.

Instead of the goal emp→? job man sal dep div one can also consider the

goals emp→? job, emp→? man dep div and emp→? sal (several other choices

of splitting up the five attributes are possible). As fd’s the one goal would

be equivalent to the other fd’s together. As goals this is not true: with

the different goals we can for instance distinguish employees having only
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one job but two managers from employees having two jobs but only one

manager. Both employees are different kinds of exceptions, and the de-

composition can generate separate subrelations for both kinds of excep-

tions. If we put everything into one goal, we will have only one subrelation

for all kinds of exceptions. In the next chapter we shall describe the de-

composition that is generated in both cases.

Table 2.1 shows a possible instance for STAFF . It illustrates that there

are exceptions to the given goals. To keep the table reasonably small the

number of exceptions is much larger than one would expect in any “real”

company.
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emp job man sal dep div

Wallace accountant Brown 2000 sales Los Angeles

Diamond accountant Brown 1500 sales Los Angeles

Murrel secretary Wallace 1000 sales Los Angeles

Murrel secretary Diamond 1000 sales Los Angeles

Murrel secretary Brown 1000 sales Los Angeles

Brown sales manager Goldstein 3000 sales Los Angeles

Goldstein gen. manager Goldstein 4000 sales Los Angeles

Eltman carrier Kedesdy 1000 stock Los Angeles

Kedesdy accountant Brown 2000 stock Los Angeles

Carlson chauffeur Kedesdy 1500 stock Los Angeles

Pike secretary Kedesdy 1300 stock Los Angeles

Goldstein gen. manager Goldstein 4000 stock Los Angeles

Pierce accountant Shapiro 1500 sales Santa Barbara

Goodwin secretary Pierce 1000 sales Santa Barbara

Goodwin secretary Shapiro 1000 sales Santa Barbara

Jones chauffeur Shapiro 1000 sales Santa Barbara

Shapiro accountant Shapiro 1000 sales Santa Barbara

Shapiro sales manager Goldstein 2000 sales Santa Barbara

Goldstein gen. manager Goldstein 4000 sales Santa Barbara

Matthews accountant Shapiro 1600 sales Bakersfield

Tyrrell chauffeur Shapiro 1000 sales Bakersfield

Tyrrell carrier Shapiro 800 sales Bakersfield

Shapiro sales manager Goldstein 2000 sales Bakersfield

Goldstein gen. manager Goldstein 4000 sales Bakersfield

Table 2.1: Instance for STAFF .
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Chapter 3

Decomposition with Goals

In this chapter we describe how to use goals for generating a horizontal

decomposition of a relation scheme. This chapter covers [10, 11, 12, 23].

Consider a relation scheme R = (Ω,G,F ∪ A), and suppose that F ∪ A
is not in conflict. (We can verify that using Algorithm 2.1). Suppose F
contains X → Y and G contains X→? Y . If we decompose R according

to X→? Y , we obtain a subrelation in which X → Y holds, and another

subrelation for the exceptions, in which X ̸̸→ Y holds. But since X→ Y

holds in R, this second subrelation will have only an empty instance.

This means that the constraints that must hold in this subrelation are in

conflict.

To avoid generating conflict in the subrelations, we must know which con-

straints (usually called dependencies since they are functional or afunc-

tional dependencies) hold in the subrelations that are the result of a hor-

izontal decomposition. This is called the inheritance problem (since the

dependencies of the subrelations are “inherited” from the main relation).

To know which dependencies hold in the subrelations we must also be able

to find out if a dependency is a consequence of a given set of dependencies.

This chapter is divided into 3 sections: First we solve the implication

problem for fd’s and ad’s. We also provide a sound and complete set of

inference rules for fd’s and ad’s. Then we show which dependencies hold in

the subschemes of a horizontally decomposed relation. Finally, we provide

two normal forms for horizontal decompositions. We give a decomposition

algorithm for both normal forms, and illustrate them using Example 2.1.

31
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3.1 The Implication Problem for fd’s and ad’s

For fd’s only, the implication problem is very well known [22, 24, 26].

Several algorithms have been developed, of which the best ones run in

O(♯F × ♯Ω) time (worst case), i. e. the number of fd’s multiplied by the

number of attributes1. In this section we focus on the implication problem

for mixed fd’s and ad’s. From Theorem 2.2 we already know that the

presence of ad’s does not influence the implication problem for fd’s, as

long as there is no conflict. So we only have to solve the implication

problem for ad’s (considering the presence of fd’s and ad’s).

We first propose the following set of inference rules for (mixed) fd’s and

ad’s:

(F1) : if Y ⊆ X then X→ Y .

(F2) : if X→ Y and W ⊆ V then XV → YW .

(F3) : if X→ Y and Y → Z then X→ Z.

(A1) : if XV ̸̸→ YW and W ⊆ V then X ̸̸→ Y .

(FA1) : if X→ Y and X ̸̸→ Z then Y ̸̸→ Z.

(FA2) : if Y → Z and X ̸̸→ Z then X ̸̸→ Y .

The rules F1, F2, F3 are the “classical” inference rules for fd’s, reflexivity,

augmentation and transitivity, which are known to be sound and complete

for fd’s [26, 22, 24]. This means that “|=” and “⊢” are equivalent for fd’s.

In this case we prefer to write |= instead of ⊢.

Lemma 3.1 The rules A1, FA1 and FA2 are sound.

Proof We show that the rules cannot be false:

A1 : Suppose XV ̸̸→ YW holds (and W ⊆ V ) and for some X-value

(in some instance) X ̸̸→ Y does not hold (hence X → Y holds

for that X-value). Since XV → X by F1, this X-value is an

XV -complete set of tuples, in which (by F2) XV → YW holds.

This contradicts with the assumption that XV ̸̸→ YW holds.

FA1 : Suppose that X → Y holds, and for some Y -value Y ̸̸→ Z does

not hold (hence Y → Z holds for that Y -value). Consider an

1In [3, 26] such algorithms are claimed to run in linear time, but this depends on the

representation of fd’s
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(arbitrary) X-value, that corresponds to that Y -value (meaning

that there is a tuple in that X-value having that Y -projection).

Since X → Y all tuples in that X-complete set of tuples have

that same Y -value. And since we assumed that Y → Z holds for

that Y -value these tuples all have the same Z-value. This means

that X→ Z holds for that X-value, hence X ̸̸→ Z cannot hold.

FA2 : Suppose Y → Z and X ̸̸→ Z hold, but for some X-value X ̸̸→ Y

does not hold (hence X → Y holds for that Y -value). By F3

we infer that X → Z holds in this X-complete set of tuples, a

contradiction with X ̸̸→ Z.

As suggested earlier, there are no rules for deducing an ad from two (or

more) other ad’s. Rule A1 is the “opposite” of the augmentation rule for

fd’s, and FA1 and FA2 “reverse” the transitivity rule for fd’s.

The following theorem shows the link between the implication (or “mem-

bership”) problem for mixed fd’s and ad’s and the conflict concept.

Theorem 3.1 Let F ∪A be not in conflict, X ̸̸→ Y an ad. Then F ∪A |=
X ̸̸→ Y iff F ∪A ∪ {X→ Y } is in conflict.

Proof The only-if-part is trivial.

For the if-part, suppose that F ∪ A ∪ {X → Y } is in conflict. Then, by

Theorem 2.3 F ∪ {X→ Y } |= T → U for some T ̸̸→ U ∈ A. We prove that

this implies F ∪ {T ̸̸→ U} |= X ̸̸→ Y .

Let P = {A | F |= P→ A}. There are two possibilities:

1. X ̸⊂ T . Consider the following instance r:

T Ω− T

0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1

In r, F holds, because of the definition of T ; X→ Y holds since X ̸⊂ T ;

and T ̸̸→ U holds since U ̸⊂ T (otherwise F ∪ A would have been in

conflict). Hence F ∪ {X→ Y } ̸|= T → U , since r is a counterexample,

in which F ∪ {X → Y } ∪ {T ̸̸→ U} holds. So this case (X ̸⊂ T ) is

impossible if F ∪ {X→ Y } |= T → U . This means that the following

case must hold:
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2. X ⊆ T . There are (again) two cases:

(a) U ̸⊂ Y T . Consider the following instance r:

Y T Ω− Y T

0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1

In r, F holds, because of the definition of Y T , X→ Y holds since

Y ⊆ Y T , and T ̸̸→ U holds, since U ̸⊂ Y T . Hence F ∪ {X→ Y } ̸|=
T → U , since F ∪ {X→ Y } ∪ {T ̸̸→ U} holds in r. So this case is

also impossible if F ∪ {X → Y } |= T → U . This means that the

following (final) case must be true:

(b)U ⊂ Y T (and X ⊂ T ). We show that not only F ∪ {T ̸̸→ U} |=
X ̸̸→Y but even F ∪ {T ̸̸→ U} ⊢ X ̸̸→ Y , i. e. we shall show how to

infer X ̸̸→ Y from F ∪ {T ̸̸→ U} using the inference rules for fd’s

and ad’s.

• T ̸̸→ U and TY → U induce T ̸̸→ TY by FA2,

• T ̸̸→ TY induces T ̸̸→ Y by A1 and

• T→ X and T ̸̸→ Y induce X ̸̸→ Y by FA1.

The proof is completed by remarking that F ∪ {T ̸̸→ U} ⊆ F ∪A.

By using the inference rules in the above proof, this also proves the fol-

lowing corollary:

Corollary 3.1 The inference rules F1, F2, F3, A1, FA1 and FA2 are

complete for mixed fd’s and ad’s.

From the proof of Theorem 3.1 one can also easily deduce the following

remark concerning the inference problem for fd’s:

Remark 3.1 Let F set of fd’s, X→ Y an fd such that F ̸|= X→ Y and

T→ U an fd such that F ̸|= T → U but F ∪ {X→ Y } |= T→ U . Then we

have:

• F |= T → X.

• F |= TY → U .

Using Theorem 3.1 and Lemma 2.3 one can easily prove the correctness

of the following membership algorithm for ad’s (in the presence of fd’s).
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Algorithm 3.1 Membership Detection

Input: F ,A, a set of fd’s and a set of ad’s, not in conflict; X ̸̸→ Y an ad.

Output: true or false.

Method:

for each T ̸̸→ U in A do

if F ∪ {X→ Y } |= T → U

then return(true) {and exit}
od

return(false) {only reached if for-loop is done}

This algorithms confirms our previous note, that ad’s do not “work” to-

gether: the implication problem for ad’s always depends on only one ad.

3.2 The Inheritance of fd’s and ad’s

Let R = (Ω,G,F ∪ A) be a relation scheme. We already know that we

should not decompose R according toX→? Y ∈ G if F |= X→ Y or F∪A |=
X ̸̸→ Y . (Otherwise we generate conflict in one of the subschemes.) The

same restriction applies to the (further) decomposition of the subschemes

(using other goals).

Determining whether for a goal X→? Y either X→ Y or X ̸̸→ Y holds in

R is described in the previous section. After one decomposition step, this

decision depends on the sets of dependencies that hold in the subschemes

which result from that decomposition step. In the present section we show

how these sets of dependencies can be calculated. Since they are derived

from the “parent” scheme, we call them inherited dependencies.

Notation 3.1 In the sequel we treat the horizontal decomposition of a

scheme R = (Ω,G,F ∪A), according to X→? Y ∈ G, into the (sub)schemes

R1 = (Ω,G1,F1 ∪A1) and R2 = (Ω,G2,F2 ∪A2). We assume that F ∪A
is not in conflict, F ̸|= X→ Y and F ∪A ̸|= X ̸̸→ Y .

The sets G1 and G2 can be chosen arbitrarily. (We are free to give any

meaning we like to the subrelations.) In the next section we shall show

that different choices of G1 and G2 are possible, which lead to useful normal

forms.
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In this section we show how to calculate the sets F1, F2, A1 and A2.

Since there are many sets of fd’s and ad’s that are equivalent (that have

the same closure), we shall only show how to find a generating set for the

dependencies.

For the fd’s the “inheritance problem” is easy to formulate and to prove.

Theorem 3.2 Using Notation 3.1, F1 = F ∪ {X→ Y } and F2 = F .

This theorem only says that fd’s are always inherited. This is fairly obvi-

ous: If for some X-value there is only one Y -value in R, then there cannot

be two Y -values for that X-value in a subrelation of R.

For ad’s the inheritance problem is more complicated. Some ad’s can be

violated by decomposing a relation horizontally. This is illustrated by the

following example:

Example 3.1 Let Ω = {A,B,C}, with integer domains. Let F = Ø and

A = {A ̸̸→ B}. Consider the following instance r:

A B C

0 0 0

0 1 0

0 1 1

Let R be decomposed according to B→? C. This yields

r1
A B C

0 0 0

r2
A B C

0 1 0

0 1 1

The ad A ̸̸→ B is violated in both r1 and r2. This is caused by the fact

that the A-complete sets in r1 and r2 are not A-complete in r.

The example suggests that for an ad T ̸̸→ U to be inherited by R1 or R2

the T -values of r1 (resp. r2) must be T -complete in r, i. e. the T -values

that occur in r1 must not occur in r2 and vice versa. Hence, by dividing

the tuples in two X-complete sets (that is what the horizontal decompo-

sition does) the T -unique sets of tuples must not be split up. A sufficient

condition is to require that all T -unique sets of tuples are also X-unique
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(i. e. every T -value corresponds to only one X-value). We shall prove that

this condition is also necessary.

The above observation is formalized in the following lemma:

Lemma 3.2 Using notation 3.1, an ad T ̸̸→ U holds in both R1 and R2

if F ∪A |= T ̸̸→ U and F |= T → X.

The “only if variant” of the above lemma is not true: Let F = {X→ T}
and A = {X ̸̸→ U, T ̸̸→ U}. Let R be decomposed according to X→? Y .

Theorem 3.2 says that X→ T holds in R1 and R2. Lemma 3.2 says that

X ̸̸→ U holds in R1 and R2, since X→ X holds. The ad T ̸̸→ U does not

satisfy the condition of Lemma 3.2, since T → X does not hold. However

T ̸̸→ U holds in both R1 and R2 since it can be inferred from X→ T and

X ̸̸→ U by rule FA1.

Now that we have a sufficient condition for ad’s to be inherited, we shall

develop a necessary condition. First we prove a partial result, which shows

that although it is possible to lose some ad’s, it is not possible to create

new ones:

Lemma 3.3 If T ̸̸→ U holds in R1 (resp. R2) then F ∪A ∪ {X→ Y } |=
T ̸̸→ U (resp. F ∪A ∪ {X ̸̸→ Y } |= T ̸̸→ U).

Proof Consider an ad T ̸̸→ U such that F ∪ A ∪ {X → Y } ̸|= T ̸̸→ U .

Then F ∪ A ∪ {X → Y } ∪ {T → U} is not in conflict, by Theorem 3.1.

We shall prove that there exists an r in which F ∪A holds, and for which

T ̸̸→ U does not hold in r1.

Let r = Arm(F ∪ {X → Y } ∪ {T → U}). In r, F ∪ A holds since (by

Theorem 2.1). After decomposing r according to X→? Y r1 = Arm(F ∪
{X→ Y } ∪ {T→ U}) and r2 = Ø. In r1 T ̸̸→ U does not hold.

The proof for R2 is somewhat similar. Consider an ad T ̸̸→ U such that

F ∪A∪ {X ̸̸→ Y } ̸|= T ̸̸→ U . Then F ∪A∪ {X ̸̸→ Y }∪ {T → U} is not in

conflict, by Theorem 3.1.

Let r = Arm(F ∪ {T → U}). In r, F ∪A holds and after decomposing r

according to X→? Y r1 = Ø and r2 = Arm(F ∪ {T → U}). In r2 T ̸̸→ U

does not hold.
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Lemma 3.3 states (in other terms) that (F1∪A1)
∗ ⊆ (F ∪A∪{X→ Y })∗

and (F2 ∪A2)
∗ ⊆ (F ∪A ∪ {X ̸̸→ Y })∗.

The result of Lemma 3.3 does not take into account the ad’s of A that

may not be inherited. Therefore we first define a smaller set of ad’s:

Notation 3.2 Using Notation 3.1 let Â = {T ̸̸→ U ∈ A | F |= T → X}.

Note from Lemma 3.2 that the ad’s of Â are inherited by both R1 and R2.

If an ad T ̸̸→ U does not hold in an instance then for some T -value T → U

must hold in that instance. Such a T -value (i. e. T -unique and T -complete

set of tuples) will be called a violation of T ̸̸→ U .

In the proof of the inheritance of ad’s a special instance is needed, of which

the construction is described below. This construction starts with a set

of tuples in which some ad’s of A do not hold, and by adding some more

tuples the violations of the ad’s of A are eliminated.

Lemma 3.4 Let A′ ⊆ A, F ⊆ F ′, and let F ′ ∪ A be not in conflict.

Let sot be a set of tuples in which F ∪ A′ holds, but in which some ad

P ̸̸→ Q ∈ A − A′ does not hold. Then one can construct a set sot′ of
tuples, containing sot as a subset, in which F ∪ A′ still holds, and in

which the number of violations of P ̸̸→ Q is less than in sot.

Proof Suppose that the domains of Arm(F ′) and sot are disjoint.2 Sup-

pose also that in Arm(F ′) the domains of the attributes all are disjoint.

(This can be easily achieved by replacing Arm(F ′) by an equivalent in-

stance with other domains.)

Let P = {A ∈ Ω | F |= P → A}. Let t be a tuple in an arbitrary violation

of P ̸̸→ Q (in sot). Let s be an arbitrary tuple of Arm(F ′). The domain

of Arm(F ′) (and Arm(F ′) too) is changed such that s[P ] := t[P ]. Let r′

be the union of this adapted Armstrong relation and sot.

• In r′, F still holds, since F holds in sot and Arm(F ′), and since if

V ̸⊂ P then V → W ∈ F still holds because no tuple of sot has

the same V -projection as any tuple of Arm(F), and if V ⊆ P then

V → W ∈ F still holds because also W ⊆ P and if the V -projection of

2Strictly speaking we must assume that the domains are the same, but that the instances

use no common elements of the domains.
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a tuple of sot and of a tuple of Arm(F ′) are equal then this projection

is t[V ], and hence for the tuple of sot and the tuple of Arm(F ′) the

W -projection is t[W ] by the construction of r′.

• In r′, A′ holds since A′ holds in sot and A ⊇ A′ holds in Arm(F ′) and
since an ad cannot be violated by taking a union.

• In Arm(F ′), P ̸̸→ Q ∈ A holds, hence Arm(F ′) does not contain any

violation of P ̸̸→ Q. In r′ the violation of P ̸̸→ Q in sot that contains t

is no longer a violation of P ̸̸→ Q. Hence in r′ the number of violations

of P ̸̸→ Q is (strictly) less than in sot.

The construction, used in the proof of the above lemma is illustrated by

the following, (simplified) example.

Example 3.2 Consider a scheme R with attributes {A,B,C,D}, fd’s

F = F ′ = {A → B,B → A,C → D,D → A} and ad’s A = {A ̸̸→ C,

A ̸̸→ D}. Let A′ = {A ̸̸→ C}.

Consider the following set of tuples sot:

A B C D

a a a a

a a b a

b b c b

b b d b

c c e c

c c f d

In sot F ∪A′ holds, but A ̸̸→ D does not hold. There are two violations

of A ̸̸→ D: {tuples 1 and 2} and {tuples 3 and 4}.
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The following instance is equivalent to Arm(F):

A B C D

0 0 0 0

1 1 1 1

0 0 2 2

0 0 3 0

1 1 4 4

1 1 5 1

0 0 6 2

1 1 7 4

With the notation of Lemma 3.4 P = AB. Let t = {a, a, a, a} and s =

{0, 0, 0, 0}. After the renaming of Arm(F), the union of sot and Arm(F)

is the instance:

r′ =
A B C D

a a a a

a a b a

b b c b

b b d b

c c e c

c c f d

a a 0 0

1 1 1 1

a a 2 2

a a 3 0

1 1 4 4

1 1 4 4

1 1 5 1

a a 6 2

1 1 7 4

In r′, F ∪ A′ still holds, and the number of violations of A ̸̸→ D in r′ is
less than in sot: only {tuples 3 and 4} is still a violation of A ̸̸→ D.

The effect of repeatedly performing the above construction is described

by the following corollary:
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Corollary 3.2 Let A′ ⊆ A and let F ∪A be not in conflict. Let sot be a

set of tuples in which F ∪A′ holds. Then there exists a set of tuples sot′,
containing sot as a subset, in which F ∪A holds.

Proof sot′ is obtained by repeating the above construction for every

violation of every ad of A−A′ which does not hold in sot.

The construction, described in Lemma 3.4 and Corollary 3.2 is the key to

the solution of the inheritance problem, not only for ad’s, but also for the

constraints that will be defined in the following chapters. It will also help

solve the implication problem of some constraints.

The solution of the inheritance problem is not hard to prove now:

Theorem 3.3 Using Notation 3.1 and 3.2, F1 = F ∪ {X→ Y }, A1 = Â,

F2 = F and A2 = Â ∪ {X ̸̸→ Y }.

Proof We already know that (F ∪ {X → Y } ∪ Â)∗ ⊆ (F1 ∪ A1)
∗ ⊆

(F ∪ {X → Y } ∪ A)∗ and (F ∪ {X ̸̸→ Y } ∪ Â)∗ ⊆ (F2 ∪ A2)
∗ ⊆ (F∪

{X ̸̸→ Y } ∪A)∗.

Consider an ad T ̸̸→ U such that F ∪ {X → Y } ∪ A |= T ̸̸→ U but

F ∪ {X→ Y } ∪ Â ̸|= T ̸̸→ U . We prove that T ̸̸→ U does not hold in R1.

Since F∪{X→ Y }∪Â ̸|= T ̸̸→ U we know that F∪{X→ Y }∪Â∪{T→ U}
is not in conflict, by Theorem 3.1. Hence there exists a set of tuples sot

in which F ∪ {X→ Y } ∪ Â ∪ {T → U} holds.

Let r′ = sot. When r′ is decomposed according to X→? Y , r′1 = sot and

r′2 = Ø. In sot F ∪ Â holds, but a number of ad’s of A − Â may not

hold. By the construction of Lemma 3.4 and Corollary 3.2 one can build

an instance r which contains sot and in which F ∪ A is satisfied. In

this construction a number of copies of Arm(F) are added to sot. Since

X ̸̸→ Y holds in Arm(F), and since F ∪A ̸|= T→ X (hence X ̸⊂ T ), these

copies are added to r2. Hence r1 = sot remains unchanged, implying that

T → U holds in r1. Hence T ̸̸→ U does not hold in r1, which means that

F1 ∪A1 ̸|= T ̸̸→ U .

For R2 the proof is similar: Consider an ad T ̸̸→ U such that F ∪ A ∪
{X ̸̸→Y } |= T ̸̸→ U , but F ∪ Â∪ {X ̸̸→ Y } ̸|= T ̸̸→ U . We prove that T ̸̸→U

does not hold in R2.
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Since F ∪ Â∪ {X ̸̸→ Y } ̸|= T ̸̸→ U we know that F ∪ Â∪ {X ̸̸→ Y }∪ {T→
U} is not in conflict. Hence there exists a set of tuples sot in which

F ∪ Â ∪ {X ̸̸→Y } ∪ {T → U} holds.

Let r′ = sot. When r′ is decomposed according to X→? Y r′1 = Ø and

r′2 = sot. In sot F ∪ Â holds, but a number of ad’s of A − Â may

not hold. By the construction of Lemma 3.4 and Corollary 3.2 one can

build an instance r which contains sot and in which F ∪ A is satisfied.

We perform this construction, not by adding copies of Arm(F) but of

Arm(F ∪ {X→ Y }) this time, (which is allowed since F ∪ {X→ Y } ∪A
is not in conflict). Since X→ Y holds in Arm(F ∪ {X→ Y }), and since

F ̸|= T → X (hence X ̸⊂ T ), these copies are added to r1. Hence r2
remains unchanged, implying that T → U holds in r2. Hence T ̸̸→ U does

not hold in r2, which means that F1 ∪A2 ̸|= X→ Y .

3.3 Normal Forms for Horizontal Decompositions

When decomposing a relation scheme both horizontally (according to

goals) and vertically (according to fd’s) one should decide which decompo-

sition has to be performed first. Our approach is to perform the horizontal

decomposition steps first. This is based on Theorem 3.2, which states that

the horizontal decomposition, according to a goal, preserves fd’s. Also,

performing the vertical decomposition first would cause problems: only

the “real fd’s” (without exceptions) can be used for this decomposition,

and after it there may be no more subrelation with all attributes of a goal

(since the subrelations that result from vertical decompositions have fewer

attributes), so the horizontal decomposition may not be possible after all,

and last but not least, if the horizontal decomposition is still possible,

it will generate new fd’s, which can be used for vertical decomposition

again. So we perform the horizontal decomposition first. This means that

we need not consider the normal forms for the vertical decomposition when

designing normal forms for the horizontal decomposition.

There is one gap in the theory of the previous sections: we have proved

the inheritance for fd’s and ad’s, but not for goals. The reason is that,

since goals are not constraints, they are not necessarily inherited; it is an
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arbitrary choice whether we want a certain goal to be inherited by the

subrelations or not. The goals are part of the meaning of the relation, but

the meaning of the subrelations has not yet been defined.

In this section we show two possible ways of defining the inheritance of

goals, and the normal forms they lead to.

Definition 3.1 Let R = (Ω,G,F ∪A) be a relation scheme.

• Decomposing R according to X→? Y ∈ G, for which F ̸|= X→ Y and

F ∪A ̸|= X ̸̸→ Y , into R1 = (Ω,G1,F1∪A1) and R2 = (Ω,G2,F2∪A2)

is called a horizontal decomposition step (or decomposition step for

short).

• The decomposition steps and the (sub)schemes together are called a

decomposition tree (for R).

• The “final” subschemes of a decomposition tree together are called a

decomposition (of R).

First we give a “trivial” way to decompose relation schemes (with goals)

and we show that it is too simple to be useful.

Definition 3.2 R = (Ω,G,F ∪ A) is called an atomic (relation) scheme

if for all X→? Y ∈ G, F |= X→ Y or F ∪A |= X ̸̸→ Y .

Definition 3.3 Let R = (Ω,G,F ∪A) be a relation scheme.

• A decomposition step in which the whole set of goals G is (defined to

be) inherited by both subschemes (i. e. G1 = G2 = G) is called a trivial

decomposition step.

• A decomposition (R1, . . . , Rn) of R is said to be a trivial decomposition

of R if it is obtained by means of trivial decomposition steps. (This

implies that G1 = . . . = Gn = G.)
• A decomposition (R1, . . . , Rn) of R is said to be in Horizontal Normal

Form (HNF) iff all the Ri, i = 1 . . . n, are atomic schemes.

Figure 3.1 shows a trivial decomposition step for an arbitrary scheme R

(the calculation of A1 and A2 is described in Section 3.2).

We now show an example which illustrates how a “bad” choice of goals

can make it impossible to obtain a trivial decomposition which is in HNF

because the decomposition steps generate “non-atomic” schemes.
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R = (Ω,G,F ∪A)

❄

X→? Y
✓
✒

✏
✑✏✏✏✏✏✏✮

$$$$$$%

R1 = (Ω,G,F ∪ {X→ Y } ∪A1) R2 = (Ω,G,F ∪A2)

Figure 3.1: A trivial decomposition step.

Example 3.3 Consider a schemeR = ({X,Y }, {X→? Y , Y→? X},Ø ) Since

R has no constraints, both goals can be used for horizontal decomposition.

Decomposing R according to X→? Y produces two subschemes: R1 =

({X,Y }, {X→? Y , Y→? X}, {X→ Y }) andR2 = ({X,Y }, {X→? Y , Y→? X},
{X ̸̸→ Y }). Both R1 and R2 (still having the same set of goals) can be

decomposed further on using Y→? X. For R1 this produces two atomic

subschemes: R11 = ({X,Y }, {X→? Y , Y→? X}, {X→ Y , Y → X}), and
R12 = ({X,Y }, {X→? Y , Y→? X}, {X→ Y , Y ̸̸→ X}). For R2 the situa-

tion is different: if we decompose R2 according to Y→? X the ad X ̸̸→ Y is

lost. So the resulting subschemes R21 = ({X,Y }, {X→? Y , Y→? X}, {Y →
X}) and R22 = ({X,Y }, {X→? Y , Y→? X}, {Y ̸̸→ X}) are not atomic:

they can be decomposed (again) using X→? Y . One can easily see that

this decomposition process can go on for ever: the “rightmost” subrela-

tion R2...2 is never atomic. Figure 3.2 shows a decomposition tree from

which the effect of losing ad’s but keeping goals is clear.

There are two ways of solving the problem with trivial decomposition

steps: since the infinite decomposition is caused by the fact that ad’s

may be lost, but goals are preserved, one can either decide to restrict the

decompositions to avoid the loss of ad’s, or one can define the goals not

always to be inherited. Both solutions can be used, and lead to useful

decomposition steps and normal forms, described below.

Definition 3.4 Let R = (Ω,G,F ∪A) be a relation scheme.

• A goal X→? Y is said to be clean iff

1. neither X→ Y nor X ̸̸→ Y holds in R and
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R

❄
X→? Y

✎✍ ☞✌✏✏✏✏✏✏✮
$$$$$$%

R1
X→ Y

R2
X ̸̸→ Y

Y→? X Y→? X
✎✍ ☞✌ ✎✍ ☞✌❄ ❄

✘✘✘✘✘✘✘✾
❅
❅❘

✟✟✟✟✙
❍❍❍❍❥

R11
X→ Y, Y → X

R12
X→ Y, Y ̸̸→ X

R21
Y → X

R22
Y ̸̸→ X

❄
1 more

❄
X→? Y

✎✍ ☞✌
1 more

✟✟✟✟✙
❍❍❍❍❥

(R222,G)
X ̸̸→ Y

❄
etc. . .

Figure 3.2: Infinite trivial decomposition tree.

2. all ad’s of A are inherited by the decomposition of R according to

X→? Y ∈ G.
• Decomposing R according to a clean goal, into R1, R2, is called a clean

decomposition step.

• A decomposition R1, . . . , Rn is said to be a clean decomposition of R

if it is obtained by clean decomposition steps.

• A scheme R is called a clean scheme iff G does not contain any clean

goal.

• A decomposition R1, . . . , Rn is in Clean Normal Form (CNF) iff all

the Ri, i = 1 . . . n, are clean (sub)schemes.

• The decomposition steps and the subschemes together are called a

clean decomposition tree.

Figure 3.3 shows a clean decomposition step for a scheme R.

Note that both F and A are inherited by the subschemes. This means

that clean decomposition steps are dependency preserving.
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R = (Ω,G,F ∪A)

❄
X→? Y

✎✍ ☞✌✟✟✟✟✙
❍❍❍❍❥

R1 = (Ω,G,F ∪ {X→ Y } ∪A) R2 = (Ω,G,F ∪A ∪ {X ̸̸→ Y })

Figure 3.3: A clean decomposition step.

Since no fd or ad can be lost by clean decomposition steps, it is obvious

that the clean decomposition into CNF cannot produce an infinite num-

ber of subschemes. In fact the maximal number of subschemes is 2♯G.
The (sub)schemes of a clean decomposition into CNF are not necessar-

ily atomic schemes: there may still be goals which can be used in trivial

decomposition steps, but which are not clean.

Using Theorem 3.3 one can easily show the correctness of the following

algorithm for generating a clean decomposition which is in CNF :

Algorithm 3.2 Clean Decomposition into CNF

Input: R = (Ω,G,F ∪A).

Output: A clean decomposition (R1, . . . , Rn) of R

Method:

return(decompose(R = (Ω,G,F ∪A)))

function decompose(R = (Ω,G,F ∪A))

begin

for each X→? Y in G do

if isclean(X→? Y,F ∪A)

then

return(decompose(R1 = (Ω,G,F ∪ {X→ Y } ∪A)),

decompose(R2 = (Ω,G,F ∪A ∪ {X ̸̸→ Y })))
{ and exit function }

od

return(R = (Ω,G,F ∪A)) { if no clean goal in R }
end

function isclean(X→? Y,F ∪A)

begin
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var Â : set of ad’s := Ø

if F |= X→ Y

then

return(false)

if F ∪A |= X ̸̸→ Y

then

return(false)

for each T ̸̸→ U in A do

if F |= T → X

then

Â := Â ∪ {T ̸̸→ U}
od

for each T ̸̸→ U in A do

if F ∪ Â ∪ {X→ Y } ̸|= T ̸̸→ U

then

return(false)

od

return(true) { only reached if goal is clean }
end

We now present an example to illustrate the clean decomposition into

CNF.

Example 3.4 Recall Example 2.1. It has one fd: emp job→ sal. The

first proposal for G is {emp→? job man sal dep div, man→? div}. Figure 3.4
shows a clean decomposition tree for STAFF , with this set of goals.

The second set of goals, of which we claimed that it would produce more

subrelations, is {emp→? job, emp→? man dep div, emp→? sal, man→? div}.
Figure 3.5 shows a clean decomposition tree for STAFF , with this set of

goals. The number of subrelations becomes rather large. Remember that

the largest possible number of subrelations grows exponentially with the

number of goals. This explains why we did not split up the goal with the

5 attributes on its right side into 5 different goals. The largest possible

number of subschemes would become 64!

In the figures only a generating set for the constraints is given. Note that

after the decomposition according to emp→? job, the fd emp→ sal already
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STAFF
emp job→ sal

❄

emp→? job man sal dep div
✓
✒

✏
✑✟✟✟✟✙

❍❍❍❍❥

STAFF1
emp→ Ω

STAFF2
emp job→ sal

emp ̸̸→ job man sal dep div
❄

man→? div
✓
✒

✏
✑✟✟✟✟✙

❍❍❍❍❥

STAFF11
emp→ Ω
man→ div

STAFF12
emp→ Ω
man ̸̸→ div

Figure 3.4: A clean decomposition tree for STAFF (with 3 goals).

holds in STAFF1. This implies that the goal emp→? sal cannot be used

in the subtree below STAFF1. Note also that the maximum number of

subrelations is not reached (in any of the two figures). The decomposition

tree, and the number of subrelations are dependent on the order in which

the goals are used. But it is always possible that no choice of the order

will lead to the maximal number 2♯G .

Recall Table 2.1. When staff is decomposed according to the set of (4)

goals, as in Figure 3.5, the following subinstances are obtained:

staff111 contains the employees having only one job, one manager, one

department and one division (and hence also only one salary), and whose

manager has only one division for these employees. (He may have other

divisions for other employees, as is the case for Brown: his manager Gold-

stein has other divisions, but not for these employees.)
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STAFF
emp job→ sal

❄

emp→? job
✓
✒

✏
✑✘✘✘✘✘✘✾

❳❳❳❳❳❳③
STAFF1

emp→ job sal
STAFF2

emp job→ sal
emp ̸̸→ job

❄

emp→? man dep div
✓
✒

✏
✑

00✠ ❅❅❘
STAFF11
emp→ Ω

STAFF12
emp→ job sal

emp ̸̸→ man dep div

❄

man→? div
✓
✒

✏
✑

00✠
❍❍❍❥

STAFF111
emp→ Ω
man→ div

STAFF112
emp→ Ω
man ̸̸→ div

❄

emp→? man dep div
✓
✒

✏
✑

00✠ ❅❅❘
STAFF21

emp job→ sal
emp→ man dep div

emp ̸̸→ job

STAFF22
emp job→ sal

emp ̸̸→ man dep div
emp ̸̸→ job

❄

emp→? sal
✓
✒

✏
✑

00✠
❍❍❍❥

STAFF211
emp→ man dep div
emp→ sal, emp ̸̸→ job

STAFF212
emp job→ sal

emp→ man dep div
emp ̸̸→ sal, emp ̸̸→ job❄

man→? div
✓
✒

✏
✑

00✠
❳❳❳❳❳❳③

STAFF2111
emp→ man dep div
emp→ sal,man→ div

emp ̸̸→ job

STAFF2112
emp→ man dep div
emp→ sal,man ̸̸→ div

emp ̸̸→ job

Figure 3.5: A clean decomposition tree for STAFF (with 5 goals).
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staff111 =
emp job man sal dep div

Wallace accountant Brown 2000 sales Los Angeles

Diamond accountant Brown 1500 sales Los Angeles

Brown sales manager Goldstein 3000 sales Los Angeles

Eltman carrier Kedesdy 1000 stock Los Angeles

Kedesdy accountant Brown 2000 stock Los Angeles

Carlson chauffeur Kedesdy 1500 stock Los Angeles

Pike secretary Kedesdy 1300 stock Los Angeles

staff112 contains the same kind of employees as staff111, but whosemanager

has more than one division for these employees.

staff112 =
emp job man sal dep div

Pierce accountant Shapiro 1500 sales Santa Barbara

Jones chauffeur Shapiro 1000 sales Santa Barbara

Matthews accountant Shapiro 1600 sales Bakersfield

staff12 contains the employees with only one job, but with more than one

manager, department or division. There are different kinds of exceptions

which we cannot distinguish: Murrell has different managers, but only

one department and division, whereas Goldstein has only one manager

(himself) and more than one department and division. We could distin-

guish these by splitting up the goals, but we have not done so to keep the

number of subrelations reasonably small.

staff12 =
emp job man sal dep div

Murrel secretary Wallace 1000 sales Los Angeles

Murrel secretary Diamond 1000 sales Los Angeles

Murrel secretary Brown 1000 sales Los Angeles

Goldstein gen. manager Goldstein 4000 sales Los Angeles

Goldstein gen. manager Goldstein 4000 stock Los Angeles

Goldstein gen. manager Goldstein 4000 sales Santa Barbara

Goldstein gen. manager Goldstein 4000 sales Bakersfield

Goodwin secretary Pierce 1000 sales Santa Barbara

Goodwin secretary Shapiro 1000 sales Santa Barbara
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staff2111 = Ø and staff2112 = Ø, because staff211 = Ø. staff21 contains the

employees with more than one job, but only one manager, department and

division. There are two ways of storing the salary for these employees:

either one stores the part of the salary that belongs to a certain job in the

tuples with that job, or else one stores the total salary for the employee

in all tuples with this employee. In our instance we have taken the first

possibility, since otherwise the fd emp→ sal would hold, which does not

belong to SC. staff211 contains the employees who earn exactly the same

salary for each of their jobs. In our example there are no such employees

(but there may be in general).

staff212 contains the employees with more than one job, only one manager,

department and division, and more than one salary.

staff212 =
emp job man sal dep div

Tyrrell chauffeur Shapiro 1000 sales Bakersfield

Tyrrell carrier Shapiro 800 sales Bakersfield

staff22 contains the employees having more than one job and more than

one manager, department or division.

staff22 =
emp job man sal dep div

Shapiro accountant Shapiro 1000 sales Santa Barbara

Shapiro sales manager Goldstein 2000 sales Santa Barbara

Shapiro sales manager Goldstein 2000 sales Bakersfield

The second alternative for solving the problem with trivial decomposition

steps is to define the inheritance of goals differently.

Definition 3.5 Let the scheme R = (Ω,G,F ∪A) be decomposed accord-

ing to X→? Y ∈ G. A goal T→? U ∈ G is inherited by R1 (resp. R2) (i. e. is

in G1, resp. G2) if F1 ̸|= T→ U (resp. F2 ̸|= T→ U) and F1 ∪A1 ̸|= T ̸̸→ U

(resp. F2 ∪A2 ̸|= T ̸̸→ U).

In particular, the goal X→? Y is not inherited by R1, nor by R2.

When considering this definition of the inheritance of goals, we speak

about inherited decomposition steps, inherited decompositions and inher-
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ited decomposition trees. When decomposing subschemes only inherited

goals can be used.

Figure 3.6 shows an inherited decomposition step for a scheme R.

R = (Ω,G,F ∪A)

❄

X→? Y
✓
✒

✏
✑✘✘✘✘✘✘✘✾

❳❳❳❳❳❳❳③

R1 = (Ω,G1,F1 ∪A1) R2 = (Ω,G2,F2 ∪A2)

Figure 3.6: An inherited decomposition step.

Using Theorem 3.3 one can easily show the correctness of the following

algorithm for the inherited decomposition of a relation, into HNF :

Algorithm 3.3 Inherited Decomposition into HNF

Input: R = (Ω,G,F ∪A).

Output: An inherited decomposition (R1, . . . , Rn) of R

Method:

return(decompose(R = (Ω,G,F ∪A))).

function decompose(R = (Ω,G,F ∪A))

begin

for each X→? Y in G do

if usable(X→? Y,F ∪A)

then

begin

Â := Ø

for each T ̸̸→ U in A do

if F |= T → X

then

Â := Â ∪ {T ̸̸→ U}
G1 := Ø

for each P→? Q in G do
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if F ∪ {X→ Y } ̸|= P→ Q and

F ∪ {X→ Y } ∪ Â ̸|= P ̸̸→ Q

then

G1 := G1 ∪ {P→? Q}
od

G2 := Ø

for each P→? Q in G do

if F ̸|= P → Q and

F ∪ Â ∪ {X ̸̸→ Y } ̸|= P ̸̸→ Q

then

G2 := G2 ∪ {P→? Q}
od

return(decompose(R1 = (Ω,G1,F ∪ {X→ Y } ∪ Â)),

decompose(R2 = (Ω,G2,F ∪ Â ∪ {X ̸̸→ Y })))
{ and exit function }

end

od

return(R = (Ω,G,F ∪A)) { if no usable goal in R }
end

function usable(X→? Y,F ∪A)

begin

if F |= X→ Y

then

return(false)

if F ∪A |= X ̸̸→ Y

then

return(false)

return(true) { only reached if goal is usable }
end

Example 3.5 Recall the scheme R of Example 3.3. Figure 3.7 shows a

clean decomposition of R into CNF, whereas Figure 3.8 shows an inherited

decomposition of R into HNF. In the inherited decomposition tree the set

of goals is indicated for each subrelation. (With the clean decomposition

the set of goals remains the same in all subrelations). Note that in this



54 3. Decomposition with Goals

example the maximal number of subrelations is reached with the inherited

decomposition (but this will not always be the case).

R

❄
X→? Y

✎✍ ☞✌
0

0✠
❅
❅❘

R1
X→ Y

R2
X ̸̸→ Y

❄
Y→? X

✎✍ ☞✌✟✟✟✟✙
❍❍❍❍❥

R11
X→ Y, Y → X

R12
X→ Y, Y ̸̸→ X

Figure 3.7: Clean decomposition for (R, {X→? Y, Y→? X}).

R, {X→? Y, Y→? X}

❄
X→? Y

✎✍ ☞✌✟✟✟✟✙
❍❍❍❍❥

R1, {Y→? X}
X→ Y

R2, {Y→? X}
X ̸̸→ Y

❄
Y→? X

✎✍ ☞✌✏✏✏✏✏✏✮
❅
❅❘

❄
Y→? X

✎✍ ☞✌
0

0✠
❅
❅❘

R11,Ø
X→ Y, Y → X

R12,Ø
X→ Y, Y ̸̸→ X

R21,Ø
Y → X

R22,Ø
Y ̸̸→ X

Figure 3.8: Inherited decomposition tree for (R, {X→? Y, Y→? X}).

Example 3.6 Recall Example 2.1 and 3.4. The decomposition trees (for

the case with 2 and the case with 4 goals) are not given. The case with

2 goals produces a decomposition tree, similar to Figure 3.8, with the

maximal number of 4 “final” subrelations. The decomposition tree for the

4 goals does not contain the maximal number of 16 final subrelations, but

much more than the 7 subrelations of the clean decomposition into CNF.
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The subrelations STAFF12, STAFF22 and STAFF212 of Figure 3.5 are

clean, but not atomic. Hence they still can be decomposed further on, if

inherited decomposition steps are used instead of clean ones.

A third possibility for avoiding infinite decompositions is to combine the

clean and inherited decomposition steps. One can easily define a clean in-

herited decomposition step (an inherited decomposition step according to

a clean goal) and a Clean Horizontal Normal Form (CHNF). The reader

is invited to prove that this CHNF is equivalent to the CNF, or in other

words, that goals which are not inherited by the schemes that result from

a clean inherited decomposition step can never become clean in the re-

maining part of the decomposition process.

The relationship between HNF, CNF , trivial-, clean- and inherited de-

compositions is as follows:

• A trivial decomposition into HNF is also in CNF (if we disregard

differences in the sets of goals of the final subrelations). However it

may not be possible to generate it using clean decomposition steps.

• An inherited decomposition in HNF is also in CNF (disregarding goals

again). It may not be possible to generate it using clean decomposition

steps.

• The schemes obtained by clean decomposition steps can also be ob-

tained using inherited decomposition steps, (disregarding goals again),

but the resulting decomposition (in CNF ) may not (yet) be in HNF.
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Chapter 4

Decomposition with cfd’s

The horizontal decomposition, based on goals, is (as far as we know) the

only theoretical study on the relational database model, which uses a

part of the meaning of a relation. In this chapter we describe how to

generate horizontal decompositions using a new class of constraints, the

conditional-functional dependencies (cfd’s). The cfd’s contain the func-

tional dependencies as a subclass. The “goals” of Chapters 2 and 3 can

be expressed as “trivial” cfd’s.

This chapter covers [13]. It is divided into four parts: in Section 4.1 we

define the horizontal decomposition, based on cfd’s and we redefine the

Armstrong relation and the conflict concept for cfd’s. In Section 4.2 the

implication problem is solved, for mixed cfd’s and ad’s. In Section 4.3 we

treat the inheritance problem for cfd’s and ad’s. In Section 4.4 finally, a

new normal form for horizontal decompositions is proposed: the Condi-

tional Normal Form, and a nontrivial example illustrates the algorithm

for decomposing a relation scheme into this normal form.

4.1 Conditional-Functional Dependencies

In Example 2.1 a number of goals were given, to describe that “most

employees have only one job, one manager, one salary, one department

and one division. However, not all kinds of exceptions are possible. Fig-

ure 3.5 shows a subrelation STAFF21 (which is still decomposed further

on) for the employees with only one manager, department and division,

but with several jobs. One can easily imagine that this situation cannot

57
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occur in some companies. Also, if the fd emp job→ sal is not present, one

can generate a subrelation for employees having only one job, manager,

department and division, but several salaries. This clearly is impossible

in every reasonable company. The decomposition based on goals does not

provide a way for avoiding the generation of such “ridiculous” subrela-

tions, which will always be empty, although their set of constraints is not

in conflict.

The reason why the horizontal decomposition sometimes generates sub-

relations that are always empty is that there is a relationship between

the fd’s, represented by the goals. The fact that employees having only

one job, manager, department and division can have only one salary is

a constraint, which cannot be expressed using fd’s and ad’s only (and is

weaker than emp job→ sal). Its formal definition is:

Definition 4.1 Let R be a relation scheme, X,Y, Z ⊆ Ω.

• A relation instance r of R satisfies the conditional-functional depen-

dency (cfd) X→ Y ⊃− X→ Z iff in every X-complete set of tuples in

r, in which the fd X→ Y holds, the fd X→ Z holds too.

• The scheme R satisfies X → Y ⊃− X → Z iff all the instances of R

satisfy X→ Y ⊃− X→ Z.

The constraint which prevents the “salary” problem is the cfd

emp→ job man dep div ⊃− emp→ sal.

It is what we call in general a “partial implication between fd’s”: if the

first fd holds in a (well defined) part of a relation instance, then the second

fd also holds in that part of the relation instance.

The cfd’s contain the fd’s as a subclass. Indeed a cfd X→ Y ⊃− X→ Z

is equivalent to the fd X → Z iff Y ⊆ X. In the sequel we shall usually

denote fd’s as fd’s and not as these special cfd’s, although this notation is

in fact ambiguous, since there are many cfd’s that are equivalent to the

same fd.

Note that the cfd X→ Y ⊃− X→ Z implies the constraint expressed by

“if X → Y holds in an instance r then X → Z also holds in r”, but is

stronger. (In Chapter 6 we shall see how to express the weaker constraint.)
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The horizontal decomposition, based on cfd’s, is defined in a similar way

than for goals:

Definition 4.2 The horizontal decomposition of a scheme R, according

to the cfd X → Y ⊃− X → Z, is the ordered pair (R1, R2), where R1 =

σX→Y (R) and R2 = R −R1.

Note that the horizontal decomposition of a scheme, according to X →
Y ⊃− X → Z does not depend on the set Z. However, since for every

instance r of R, σX→Y (r) is an X-complete set of tuples of r in which

X→ Y holds, X→ Z also holds in R1. Note also that R2 = σX ̸̸→Y (R).

From now on we shall assume that the set SC of constraints of a relation

scheme R consists of a set C of cfd’s and a set A of ad’s.

When Z ⊆ XY the cfd X→ Y ⊃− X→ Z holds in every instance (since

the “right” fd is a consequence of the “left” fd). However, including triv-

ial cfd’s in C is not useless: a trivial cfd can lead to nontrivial horizontal

decompositions. Using a trivial cfd X→ Y ⊃− X→ Z is equivalent to the

decomposition according to the goal X→? Y . Hence the horizontal decom-

positions of Chapters 2 and 3 can be “simulated” by the decompositions

described in the present chapter.

The calculation of the constraints that hold in the selections of R is

described in Section 4.3. The main difference with the inheritance prob-

lem of Section 3.2 is that both cfd’s and ad’s (which hold in R) may not

hold in some selections of R.

Since fd’s are “special” cfd’s the conflict-problem of fd’s and ad’s also

occurs with cfd’s and ad’s. We give a conflict-detection algorithm for cfd’s

and ad’s below, but to prove its correctness we first need the definition

(and existence) of Armstrong relations for fd’s, considering the presence

of cfd’s.

Definition 4.3 Let C be a set of cfd’s over a set Ω of attributes. A strong

Armstrong relation for C is a strong Armstrong relation for the set of all

fd’s that are a consequence of C.

To show a construction of (strong) Armstrong relations for fd’s, consider-

ing the presence of cfd’s, we first define a special set of fd’s:
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Definition 4.4 FSATC(X,Y ) is the smallest possible set of fd’s, such

that:

1. X→ Y ∈ FSATC(X,Y ).

2. If T → U ∈ FSATC(X,Y ) and T → U ⊃− T → V ∈ C then T → V ∈
FSATC(X,Y ).

3. If FSATC(X,Y ) |= T→ V then T→ V ∈ FSATC(X,Y ).

FSATC(X,Y ) can be constructed starting from {X → Y } by repeatedly

trying to satisfy 2 and 3 of the definition.

Lemma 4.1 Let C be a set of cfd’s over Ω, T, V,X, Y ⊆ Ω. T → V ∈
FSATC(X,Y ) iff C ∪ {X→ Y } |= T → V .

Proof For X→ Y it is obvious that C ∪ {X→ Y } |= X→ Y . For other

fd’s we prove the lemma by induction.

• Suppose T → V is added by trying to satisfy part 2 of the definition.

Then (by induction) there is a cfd T → U ⊃− T → V ∈ C for which

C ∪ {X→ Y } |= T → U . As remarked earlier, T → U and T → U ⊃−
T → V imply T → V .

• Suppose T → V is added by trying to satisfy part 3 of the definition.

Then it is a consequence of a number of fd’s for which the lemma

already holds (by induction hypothesis). Hence T → V also is a con-

sequence of C ∪ {X→ Y }.

This proves that all the fd’s of FSATC(X,Y ) are consequences of C ∪
{X → Y }. To prove that the opposite inclusion also holds, consider

Arm(FSATC(X,Y )). In Arm(FSATC(X,Y )) all the fd’s of FSATC(X,Y )

hold, and (since FSATC(X,Y )∗ = FSATC(X,Y ) by part 3 of the defini-

tion) no other fd’s hold. Suppose some cfd T→ U ⊃− T→ V of C does not

hold in Arm(FSATC(X,Y )). Then there exists a T -complete set of tuples

in Arm(FSATC(X,Y )) in which T → U holds and in which T → V does

not hold. By Theorem 2.1 this means that FSATC(X,Y ) |= T → U , and

hence T → U ∈ FSATC(X,Y ) (by part 3 of the definition). By part 2 of

the definition this implies that T → V ∈ FSATC(X,Y ) and hence T → V

must hold in Arm(FSATC(X,Y )), a contradiction.

From Theorem 2.1 and the above lemma one can easily deduce that
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Theorem 4.1 Let C be a set of cfd’s. Arm(FSATC(Ø,Ø )) is a strong

Armstrong relation for C. In other words, for all T,U ⊆ Ω holds that

C |= T→ U iff T → U ∈ FSATC(Ø,Ø ).

Note that the Armstrong relation for C is not an Armstrong relation for

cfd’s, only for fd’s.

Definition 4.4 and Lemma 4.1 have been given for FSATC(X,Y ) with arbi-

trary X and Y , since this notation will be useful in the following sections.

It is not necessary to do so, since FSATC(X,Y ) and FSATC∪{X→Y }(Ø,Ø )

are equal. However, the second notation does not indicate that in the set

C ∪ {X→ Y } the fd X→ Y is “special”.

Note also that FSATC(X,Y ) is equal to FSATC(Ø,Ø ) if Y ⊆ X.

With the Armstrong relation for C, we can prove the conflict detection

algorithm which is based on the following theorem:

Theorem 4.2 C∪A is in conflict iff for some ad X ̸̸→ Y of A, C |= X→ Y

holds.

Proof The if-part is trivial.

For the only-if-part, suppose that C∪A is in conflict. Hence in the instance

Arm(FSATC(Ø,Ø )), in which C holds (cfr. the proof of Lemma 4.1), some

ad X ̸̸→ Y of A does not hold. By Theorem 2.1 this implies that X →
Y holds in Arm(FSATC(Ø,Ø )). Hence X → Y ∈ Arm(FSATC(Ø,Ø )).

Theorem 4.1 then implies that C |= X→ Y .

Algorithm 4.1 Conflict Detection

Input: C,A, a set of cfd’s and a set of ad’s.

Output: true or false.

Method:

for each T ̸̸→ U in A do

if C |= T → U

then

return(true) { and exit }
od

return(false) { only reached if for-loop is done }
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In Algorithm 4.1 we did not explain how to verify whether C |= T → U .

This means verifying whether T → U ∈ FSATC(Ø,Ø ), and we know how

to construct FSATC(Ø,Ø ). However, this procedure is very inefficient,

since calculating FSATC(Ø,Ø ) implies calculating the closure of sets of

fd’s, which takes much time because the closure of a set of fd’s has expo-

nentially more elements than the original set. However, when we explain

the membership algorithms for mixed cfd’s and ad’s in the next section,

we shall give an efficient algorithm for verifying T → U ∈ FSATC(Ø,Ø ),

without actually calculating closures of sets of fd’s.

4.2 The Implication Problem for cfd’s and ad’s

The implication problem for fd’s has been studied exhaustively in liter-

ature [2, 3]. In the previous chapter we have reduced the implication

problem for fd’s and ad’s to the implication problem for fd’s only. In this

section we shall do the same for cfd’s and ad’s.

We propose the following set of inference rules for cfd’s:

(C1) : if Z ⊆ XY or XY → Z then X→ Y ⊃− X→ Z.

(C2) : if X → Y ⊃− X → Z and X → Y ⊃− X → T then X → Y ⊃−
X→ ZT .

(C3) : if X→ Y ⊃− X→ Z and Z→ T then X→ Y ⊃− X→ T .

(C4) : if X → Y ⊃− X → Z and X → Z ⊃− X → T then X → Y ⊃−
X→ T .

(C5) : if X→ Y ⊃− X→ Z and W → Y ⊃− W → X and X→ W then

W → Y ⊃− W → Z.

As fd’s are special cfd’s the use of fd’s in these rules is allowed. The

classical inference rules for fd’s (reflexivity, augmentation and transitivity)

can be deduced from C1 . . . C4 as follows:

Lemma 4.2 The rules C1 . . . C4 are complete for fd’s.

Proof We first prove that all representations of the same fd are equiv-

alent: let Y ⊆ X and Y ′ ⊆ X. X → Y ′ ⊃− X → Y holds by C1.

With X → Y ⊃− X → Z it induces X → Y ′ ⊃− X → Z by C4. So all

X→ Y ⊃− X→ Z with Y ⊆ X are equivalent.
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We now show how to prove the inference rules for fd’s from C1 . . . C5.

F1 : Let Y ⊆ X. Then X→ X ⊃− X→ Y holds by C1.

F2 : Let X → Y and W ⊆ V . XV → XV ⊃− XV → X holds by

C1. With X → Y it induces XV → XV ⊃− XV → Y by C3.

XV → Y ⊃− XV → YW also holds by C1. The latter two cfd’s

together induce XV → XV ⊃− XV → YW by C4.

F3 : Let X→ Y and Y → Z. X→ X ⊃− X→ Y and Y → Z induce

X→ X ⊃− X→ Z by C3.

Note that for the inference of fd’s (represented as special cfd’s) we do not

need rule C5.

Theorem 4.3 The rules C1 . . . C5 are sound.

Proof For C1 . . . C4 this is very easy, and left to the reader. We only

prove C5:

Let S be an arbitrary W -complete set of tuples. Since X → W holds, S

is also X-complete (see Remark 2.1). If W → Y holds in S then so does

X → Y by transitivity on X → W and W → Y . X → Y in S induces

X → Z in S and W → Y in S induces W → X in S. By transitivity on

W → X and X→ Z, W → Z holds in S.

The proof of the completeness of C1 . . . C5 for cfd’s relies on some special

properties of FSATC(X,Y ), which we describe first.

Lemma 4.3 If T → V ∈ FSATC(X,Y ) then C ⊢ T → V or C ⊢ T → X.

Proof For T → V = X → Y this property is trivial. We prove that

the property remains valid during the construction of FSATC(X,Y ) by

repeatedly trying to satisfy parts 2 and 3 of Definition 4.4.

Let C = {Xi→ Yi ⊃− Xi→ Zi : i = 1 . . . n}.

• Let part 2 be the reason that T → V ∈ FSATC(X,Y ). Then for some

i, T = Xi and V = Zi and by induction C ⊢ Xi→ Yi or C ⊢ Xi→ X.

If C ⊢ Xi→ Yi (the other case being trivial) we have C ⊢ Xi→ Xi ⊃−
Xi→ Yi (equivalent to C ⊢ Xi→ Yi), C ⊢ Xi→ Yi ⊃− Xi→ Zi (since

Xi→ Yi ⊃− Xi→ Zi ∈ C) and hence by C4 C ⊢ Xi→ Xi ⊃− Xi→ Zi,

i. e. C ⊢ Xi→ Zi.
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• Let part 3 be the reason that T → V ∈ FSATC(X,Y ). Then there are

three possibilities:

1. If V ⊆ T , then, by C1 C ⊢ T → T ⊃− T→ V i. e. C ⊢ T → V .

2. If T = T1T2 and V = V1V2 with T1 → V1 ∈ FSATC(X,Y ) and

V2 ⊆ T2 we have that C ⊢ T1→ V1 or C ⊢ T1→ X.

– If C ⊢ T1→ V1 then C ⊢ T→ V by augmentation.

– If C ⊢ T1→ X then C ⊢ T → X, also by augmentation.

3. If T → U and U → V ∈ FSATC(X,Y ) we have (C ⊢ T → U or

C ⊢ T → X) and (C ⊢ U → V or C ⊢ U → X). Using transitivity

we obtain C ⊢ T→ V or C ⊢ T → X.

The proof is completed by remarking that reflexivity, augmentation and

transitivity are complete for fd’s.

Lemma 4.4 If T → V ∈ FSATC(X,Y ) then C ∪ {X→ Y ⊃− X→ T} ⊢
X→ Y ⊃− X→ V .

Proof For T → V = X → Y this property is trivial (by C1). As

in Lemma 4.3 we prove that the property remains valid during the con-

struction of FSATC(X,Y ) by repeatedly trying to satisfy parts 2 and 3 of

Definition 4.4.

Let C = {Xi→ Yi ⊃− Xi→ Zi : i = 1 . . . n}.

• Let part 2 be the reason that T → V ∈ FSATC(X,Y ). Then for some

i, T = Xi and V = Yi and by induction C ∪ {X→ Y ⊃− X → Xi} ⊢
X → Y ⊃− X → Yi. By Lemma 4.3 we have that C ⊢ Xi → Zi or

C ⊢ Xi→ X.

1. If C ⊢ Xi → Zi then X → Y ⊃− X → Xi and Xi → Zi induce

X→ Y ⊃− X→ Zi by C3.

2. If C ⊢ Xi → X then we have that X → Y ⊃− X → Y holds by

C1, X→ Y ⊃− X→ Xi induces X→ Y ⊃− X→ Yi by induction,

hence X→ Y ⊃− X→ Y Yi holds by C2.

X → Y Yi ⊃− X → Y (holding by C1) and X → Y ⊃− X → Xi

induce X → Y Yi ⊃− X → Xi by C4, and Xi → Y Yi ⊃− Xi → Yi
(holding by C1) and Xi → Yi ⊃− Xi → Zi induce Xi → Y Yi ⊃−
Xi→ Zi by C4.
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Xi → Y Yi ⊃− Xi → Zi and X → Y Yi ⊃− X → Xi and Xi → X

induce X → Y Yi ⊃− X → Zi by C5, and finally X → Y ⊃− X →
Y Yi and X→ Y Yi ⊃− X→ Zi induce X→ Y ⊃− X→ Zi by C4.

• Let part 3 be the reason that T → V ∈ FSATC(X,Y ). Then there are

three possibilities:

1. If V ⊆ T , then X→ Y ⊃− X→ T and T → V (reflexivity) induce

X→ Y ⊃− X→ V by C3.

2. Suppose T = T1T2 and V = V1V2 with T1 → V1 ∈ FSATC(X,Y )

and V2 ⊆ T2.

X → Y ⊃− X → T and T → T1 (reflexivity) induce X → Y ⊃−
X→ T1 by C3, and C∪{X→ Y ⊃− X→ T1} ⊢ X→ Y ⊃− X→ V1
by induction.

X → Y ⊃− X → T and T → T2 (reflexivity) induce X → Y ⊃−
X→ T2 by C3, and X→ Y ⊃− X→ T2 and T2→ V2 (reflexivity)

induce X→ Y ⊃− X→ V2 by C3.

Finally X → Y ⊃− X → V1 and X → Y ⊃− X → V2 induce

X→ Y ⊃− X→ V by C2.

3. If T → U and U→ V ∈ FSATC(X,Y ) we have that C∪{X→ Y ⊃−
X→ T} ⊢ X→ Y ⊃− X→ U and C ∪ {X→ Y ⊃− X→ U} ⊢ X→
Y ⊃− X→ V by induction, hence C ∪ {X→ Y ⊃− X→ T} ⊢ X→
Y ⊃− X→ V by combining both “derivations”.

Using these two lemmas the link between the membership problem for

cfd’s and the set FSATC(X,Y ) can be easily established:

Theorem 4.4 C |= X→ Y ⊃− X→ Z iff X→ Z ∈ FSATC(X,Y ).

Proof Let C = {Xi→ Yi ⊃− Xi→ Zi | i = 1 . . . n}.
If X → Z ∈ FSATC(X,Y ) then C ⊢ X → Y ⊃− X → Z by Lemma 4.4

(since X → Y ⊃− X → X is trivial). Hence C |= X → Y ⊃− X → Z

because C1 . . . C5 are sound.

Conversely, if X → Z ̸∈ FSATC(X,Y ), consider Arm(FSATC(X,Y )). In

Arm(FSATC(X,Y )), X→ Z does not hold, X→ Y holds and C holds too

because for every i we have:

• if Xi→ Yi ∈ FSATC(X,Y ) then Xi→ Zi ∈ FSATC(X,Y ), and hence

both fd’s hold in Arm(FSATC(X,Y )), and
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• if Xi→ Yi ̸∈ FSATC(X,Y ) then Xi ̸̸→ Yi holds, so Xi→ Yi ⊃− Xi→ Zi

holds trivially.

Since X→ Y ⊃− X→ Z does not hold in Arm(FSATC(X,Y )) C ̸|= X→
Y ⊃− X→ Z.

From the proof of the above theorem immediately follows:

Corollary 4.1 C1 . . . C5 are complete for cfd’s.

Theorem 4.4 shows that the membership problem for cfd’s is very closely

related to that of fd’s. In fact one can imagine a cfd as an ad-hoc implica-

tion between two fd’s. The construction of FSATC(X,Y ) indeed consists

of generating the “closure” of a set of fd’s, using the normal inference

rules (in part 3 of Definition 4.4) and some “additional” rules (the cfd’s

in part 2). It is not obvious that cfd’s should behave this way, since the

cfd X → Y ⊃− X → Z is a stronger constraint than the expression that

“if the fd X→ Y holds (in the entire relation) then also X→ Z holds”.

From Theorem 4.4 one can deduce a membership algorithm which simply

calculates FSATC(X,Y ) and verifies whether X→ Z is an element of this

set of fd’s. However, such an algorithm would take exponential time, since

it has to calculate the closure of a set of fd’s.

We propose a polynomial time membership algorithm for cfd’s.

Algorithm 4.2 Membership detection for cfd’s.

Input: C = {Xi→ Yi ⊃− Xi→ Zi | i = 1 . . . n}; X0→ Y0 ⊃− X0→ Z0.

Output: true or false. (meaning C |= X0→ Y0 ⊃− X0→ Z0 or not.)

Method:

var P0, P1, . . . , Pn : set of attributes

change : boolean

i, j : integer

begin

P0 := X0Y0
for i := 1 to n do

Pi := Xi {A}
od
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repeat

change := false

for j := 0 to n do

for i := 0 to n do

if Xj ⊆ Pi
then

if Pj ̸⊂ Pi {B}
then

begin

Pi := Pi ∪ Pj
change := true

end

od

od

for i := 1 to n do

if Yi ⊆ Pi
then

if Zi ̸⊂ Pi {C}
then

begin

Pi := Pi ∪ Zi

change := true

end

od

until change = false

if Z0 ⊆ P0
then

return(true)

else

return(false)

end

Theorem 4.5 Algorithm 4.2 correctly detects whether C |= X0→ Y0 ⊃−
X0→ Z0 or not.
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Proof The algorithm always stops since only a finite number of times

at least one attribute can be added to any of the Pi.

1. From test {B} it is obvious that for 0 ≤ i, j ≤ n holds that if Xj ⊆ Pi
then Pj ⊆ Pi too.

2. From test {C} in the algorithm it is obvious that for 1 ≤ i ≤ n holds

that if Yi ⊆ Pi then Zi ⊆ Pi too.

We prove the algorithm, using Theorem 4.4. We first show that Xi→ Pi ∈
FSATC(X0, Y0) for i = 0 . . . n.

• At point {A} this is certainly true since at that point P0 = X0Y0 and

Pi = Xi, i = 1 . . . n. Only when the test at {B} or {C} turns out true

some Pi may change.

• Suppose Xi → Pi and Xj → Pj both belong to FSATC(X0, Y0). If

Xj ⊆ Pi then Pi→ Xj is trivial and hence belongs to FSATC(X0, Y0).

Hence Xi→ Pi, Pi→ Xj, Xj → Pj and by transitivity Xi→ Pj is in

FSATC(X0, Y0).

Xi→ Pi and Xi→ Pj induce that Xi→ Pi ∪ Pj ∈ FSATC(X0, Y0) too,

which proves that the modification to Pi at {B} does not violate the

property that Xi→ Pi ∈ FSATC(X0, Y0).

• Suppose Xi → Pi ∈ FSATC(X0, Y0) and Yi ⊆ Pi for i = 1 . . . n.

Then also Xi → Yi ∈ FSATC(X0, Y0). Because of the construction

of FSATC(X0, Y0) we have Xi→ Zi ∈ FSATC(X0, Y0). Hence by aug-

mentation Xi→ Pi ∪ Zi ∈ FSATC(X0, Y0) too.

This proves that the modification to Pi at point {C} does not violate

the property that Xi→ Pi ∈ FSATC(X0, Y0).

The converse of this property must hold too: we prove that if Xi→ T ∈
FSATC(X0, Y0) then T ⊆ Pi, for the final Pi, i = 1 . . . n, by showing that

this property remains valid during the construction of FSATC(X0, Y0). We

denote the final value of Pi by P e
i .

• Initially only X0→ Y0 ∈ FSATC(X0, Y0), and Y0 ⊆ X0Y0 = P0 ⊆ P e
0 .

• If Xi→ Yi ∈ FSATC(X0, Y0) and Yi ⊆ Pi, for i ̸= 0, then Xi→ Zi is

added to FSATC(X0, Y0) and Zi is added to Pi at point {C}. Hence

Zi ⊆ P e
i and hence the second point of the definition of FSATC(X0, Y0)

does not cause a violation of the property.
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• The third point of the definition of FSATC(X0, Y0) means calculating

the closure of FSATC(X0, Y0). Let us first consider sets of attributes

that are an Xi for some i. Afterwards we show that it is no restriction

to neglect the other sets of attributes.

– If Xi→ T is trivial, then T ⊆ Xi ⊆ P e
i .

– Suppose Xi → T is obtained by augmenting an fd Xj → S ∈
FSATC(X0, Y0) for which S ⊆ P e

j . Then Xi = XjU and T = SV

with V ⊆ U , hence P e
j ⊆ P e

i . We have S ⊆ P e
j ⊆ P e

i and

V ⊆ Xi ⊆ P e
i , hence T = SV ⊆ P e

i .

– Suppose Xi→ T is obtained by transitivity on Xi→ Xj and Xj→
T with Xj ⊆ P e

i and T ⊆ P e
j . Then T ⊆ P e

j ⊆ P e
i .

If there were no other sets of attributes than the Xi’s, the proof would

be complete. We prove that it makes no difference for the P e
i whether

all set of attributes are Xi’s or not.

Suppose Xn+1 is a set or attributes, different from all Xi. Let C′ =
C ∪ {Xn+1→ Xn+1 ⊃− Xn+1→ Xn+1}. We claim that Algorithm 4.2

produces the same sets P0 . . . Pn for C′ as for C.
The cfd Xn+1 → Xn+1 ⊃− Xn+1 → Xn+1 does not change Pn+1 at

point {C}. But if there is an Xj with Xj ⊆ Pn+1 then Pj is added

to Pn+1. If later on Xn+1 ⊆ Pi for some i then Pn+1 is added to Pi
at point {B}. However, this change is exactly the same as the change

caused at {B} for Xj ⊆ Pi since the attributes added to Pi (at {B} for

Xn+1 ⊆ Pi) all are in Pj. Hence introducing Xn+1 and Pn+1 does not

affect P e
0 . . . P

e
n. Therefore not all sets of attributes have to be an Xi

for some i.

Let n be the number of cfd’s of C and r the number of attributes of Ω.

The reader is invited to prove that the time-complexity of Algorithm 4.2 is

O(n3r2). The time-complexity of Algorithm 4.1 then becomes O(n3r2m)

where m is the number of ad’s in A. This probably is not the best time-

complexity one can achieve, since better algorithms exist for the “fd-part”

of Algorithm 4.2 already [2].

We now present a set of inference rules for mixed cfd’s and ad’s. The rules

are not complete for the inference of cfd’s and ad’s, but are only given to

show some implications between cfd’s and ad’s:
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(CA1) : if X→ Y , X→ Z ⊃− X→ T and X ̸̸→ T then Y ̸̸→ Z.

(CA2) : if X ̸̸→ Y then X→ Y ⊃− X→ Z for all Z ⊆ Ω.

Lemma 4.5 The rules CA1 and CA2 are sound.

Proof We only prove CA1. (The other rule is rather trivial.)

Consider an arbitrary Y -complete, Y -unique set s of tuples (in an instance,

satisfying X→ Y , X→ Z ⊃− X→ T and X ̸̸→ T ). Because of X→ Y s

is also X-complete. Since X ̸̸→ T holds in this X-complete set of tuples,

X ̸̸→ Z must hold too (otherwise X→ Z ⊃− X→ T would be violated).

Hence (byX ̸̸→ Z) in s there are several Z-values, for the only one Y -value,

which means that Y ̸̸→ Z holds in s.

Since fd’s are special cfd’s prove the rules for fd’s and ad’s (A1, FA1 and

FA2) from C1, . . . , C5 and CA1 as an exercise:

Remark 4.1 C1, . . . , C4 and CA1 are complete for fd’s and ad’s.

Proof Since we already know that C1 . . . C4 are complete for fd’s, we

only have to prove A1, FA1 and FA2.

A1 : Let XV ̸̸→ YW and W ⊆ V . XV → X (reflexivity), XV →
Y ⊃− XV → YW (C1) and XV ̸̸→ YW induce X ̸̸→ Y by CA1.

FA1 : Let X→ Y and X ̸̸→ Z. X→ Y , X→ Z ⊃− X→ Z (C1) and

X ̸̸→ Z induce Y ̸̸→ Z by CA1.

FA2 : Let Y → Z and X ̸̸→ Z. X → Y ⊃− X → Y (C1) and Y → Z

induce X → Y ⊃− X → Z by C3. X → X (reflexivity), X →
Y ⊃− X→ Z and X ̸̸→ Z induce X ̸̸→ Y by CA1.

Note that rules C5 and CA2 are not needed for the inference of fd’s and

ad’s only.

We now show a solution to the implication problem for cfd’s and ad’s, and

then we give an example which explains that C1, . . . , C5, CA1 and CA2

are not complete.

Theorem 4.6 Let C ∪ A be not in conflict, X,Y ⊆ Ω. Then C ∪ A |=
X ̸̸→ Y iff C ∪A ∪ {X→ Y } is in conflict.

Proof The only-if-part is trivial.
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For the if-part, suppose that C ∪ A ∪ {X → Y } is in conflict. Then, by

Theorem 4.2 C ∪ {X→ Y } |= T→ U for some T ̸̸→ U ∈ A. We prove that

C ∪ {T ̸̸→ U} ̸|= X ̸̸→ Y is impossible.

Without loss of generality we may assume that C is minimal for the prop-

erty C ∪ {X → Y } |= T → U , i. e. all cfd’s of C are used during the con-

struction of FSATC∪{X→Y }(T, T ) = FSATC(X,Y ). “Being used” means

that the cfd Xi→ Yi ⊃− Xi→ Zi satisfies the condition of part 2 of Defi-

nition 4.4. Hence both Xi→ Yi and Xi→ Zi are in FSATC(X,Y ) for all

Xi→ Yi ⊃− Xi→ Zi ∈ C. By Lemma 4.3 this implies that C |= Xi→ Yi
or C |= Xi→ X.

If C ∪ {T ̸̸→ U} ̸|= X ̸̸→ Y then there exists an instance r in which C∪
{T ̸̸→ U} holds, but in which X ̸̸→ Y does not hold.

Consider r′ = σX→Y (r).

• If for Xi → Yi ⊃− Xi → Zi ∈ C, Xi → Yi (and hence also Xi → Zi)

holds in r then Xi→ Yi and Xi→ Zi still hold in r′ since fd’s cannot

be violated by taking a selection of r.

• If for Xi→ Yi ⊃− Xi→ Zi ∈ C, Xi→ X holds in r, then all Xi-values

correspond to one X-value (each). Hence, in r′ all the tuples of r with

some Xi-projection are included, or none are. Hence Xi→ Yi ⊃− Xi→
Zi still holds in r′. (This is in fact part of the “inheritance” problem,

and explained more carefully in Section 4.3). Hence C holds in r′.

Since C and X→ Y hold in r′, (the latter by the definition of σX→Y (r),)

T → U must hold in r′ to, since C ∪ {X→ Y } |= T → U . However, since

C ̸|= T → U and C ∪ {X → Y } |= T → U we have that C |= T → X by

Lemma 4.3. Since T → X the argument given above for the Xi also holds

for T : all tuples with some T -value are included in r′ or none are. So if

T→ U holds in r′, T ̸̸→ U cannot hold in r, a contradiction.

Using Theorem 4.2 and 4.6 one can easily prove the following algorithm:

Algorithm 4.3 Membership Detection for ad’s with cfd’s

Input: C,A, a set of cfd’s and a set of ad’s, not in conflict; X ̸̸→ Y an ad.

Output: true or false

Method:

for each T ̸̸→ U in A do
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if C ∪ {X→ Y } |= T → U

then return(true) { and exit }
od

return(false) { only reached if for-loop is done }

The time needed to perform a membership test for ad’s is the same as for

the conflict detection: O(n3r2m) where n = ♯C, m = ♯A and r = ♯Ω.

In Chapter 2 we have seen that the implication problem for fd’s is not

affected by the presence of ad’s in the relation scheme. Rule CA2 shows

that for cfd’s this is not the case.

Theorem 4.7 Let C ∪ A be not in conflict. Then C ∪ A |= X → Y ⊃−
X→ Z iff C |= X→ Y ⊃− X→ Z or C ∪A |= X ̸̸→ Y .

Proof The if-part is trivial.

For the only-if-part, assume that C ̸|= X → Y ⊃− X → Z and C ∪
A ̸|= X ̸̸→ Y . By Theorem 4.6 C ∪ A ∪ {X → Y } is not in conflict.

Consider Arm(FSATC(X,Y )). In Arm(FSATC(X,Y )) C∪{X→ Y } holds

by definition (of Armstrong relations and of FSATC(X,Y )). If some ad

T ̸̸→ U of A does not hold then C ∪ {X→ Y } |= T → U , a contradiction

with C ∪ A ∪ {X → Y } not being in conflict. In Arm(FSATC(X,Y )),

X→ Z does not hold by Theorem 4.4. Hence Arm(FSATC(X,Y )) is an

instance in which C ∪A holds and in which X→ Y ⊃− X→ Z does not

hold. Hence C ∪A ̸|= X→ Y ⊃− X→ Z.

A membership algorithm for cfd’s (considering the presence of ad’s) now

really becomes trivial:

Algorithm 4.4 Membership Detection for cfd’s with ad’s

Input: C,A, a set of cfd’s and a set of ad’s, not in conflict; X → Y ⊃−
X→ Z a cfd.

Output: true or false

Method: return((C |= X→ Y ⊃− X→ Z) or (C ∪A |= X ̸̸→ Y ))

Because of Theorem 4.7 this membership algorithm for cfd’s takes as much

time as a membership algorithm for ad’s: O(n3r2m) with n = ♯C, m = ♯A
and r = ♯Ω.
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We now show why our inference rules are not complete for cfd’s and ad’s.

We also show that there exists no complete k-ary set of inference rules. In

the next chapter we can explain why it is unlikely that a complete set of

inference rules for cfd’s and ad’s exists.

Example 4.1 Let C = {AB→ C ⊃− AB→ E , A→ D ⊃− A→ F} and

A = {AB ̸̸→ EF}. We show that C ∪ {A→ CD} |= AB→ EF , hence also

C ∪ {AB ̸̸→ EF} |= A ̸̸→ CD, but C ∪ {AB ̸̸→ EF} ̸⊢ A ̸̸→ CD.

If A→ CD holds, then also AB→ C and A→ D), by simple applications

of the rules F1 . . . F3. The two cfd’s then generate AB→ E and A→ F ,

from which one easily deduces AB→ FE.

Although Theorem 4.2 and 4.4 already show that C ∪ {AB ̸̸→ EF} |=
A ̸̸→ CD we show this explicitly:

Consider an instance in which C ∪ {AB ̸̸→ EF} holds. Consider an ar-

bitrary A-value in this instance. AB ̸̸→ EF induces A ̸̸→ EF by FA1

(with the trivial fd AB → A). So in this A-complete set there are

at least two EF -values. There are two possibilities: There are two E-

values or there are two F -values (or both). If there are two F -values then

A→ D ⊃− A→ F induces A ̸̸→ D (for this A-value) by CA1. If there

are two E-values (and only one F -value) then for every AB-value (with

the same A-value) we have two E-values (since AB ̸̸→ EF holds). Hence

AB ̸̸→ E holds in these AB-complete sets. The first cfd induces AB ̸̸→ C

by CA1, which induces A ̸̸→ C. This proves that in every A-complete

set of tuples A ̸̸→ C or A ̸̸→ D holds, hence A ̸̸→ CD holds in the entire

instance.

The reader is invited to show that C ∪ {AB ̸̸→ EF} ̸⊢ A ̸̸→ CD. This can

be done by generating all possible ad’s that can be inferred from C∪A and

verifying that A ̸̸→ CD is not among them. However the main reason for

not being able to generate A ̸̸→ CD is that Lemma 4.4 cannot be applied

since A→ CD ⊃− A→ AB does not hold. Also, the fd ABD→ EF does

not hold (this fd is suggested in Remark 3.1).

The real reason why the rules are not complete is explained in the next

chapter. However, we can show that no k-ary set of inference rules exists

for cfd’s and ad’s. The example is a special case of the following rule:
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CAk : if X1→ Y1 ⊃− X1→ Y2
X2→ Y3 ⊃− X2→ Y4
. . .

Xk→ Y2k−1 ⊃− Xk→ Y2k
X1X2 . . . Xk ̸̸→ Y2Y4 . . . Y2k
then X1 ∩X2 ∩Xk ̸̸→ Y1Y3 . . . Y2k−1

The reader is invited to show that the rules CAk are correct (following the

argument of the example) and that the rule CAk cannot be simulated by

CA1, CA2, CA1 . . . CAk−1. Also, there exists no set of k − 1 or less cfd’s,

equivalent to the cfd’s of CAk. This leads to:

Remark 4.2 There exists no complete k-ary set of inference rules for

mixed cfd’s and ad’s.

4.3 The Inheritance of cfd’s and ad’s

The membership problem has been studied to decide whether a decom-

position according to a cfd is trivial or not (i. e. whether for the cfd

X → Y ⊃− X → Z the fd X → Y or the ad X ̸̸→ Y holds). When

performing several decomposition steps (i. e. decomposing the subschemes

further on) it is necessary to know which dependencies hold in the sub-

schemes that are the result of a decomposition step. This inheritance

problem is slightly more complicated than for fd’s and ad’s, since both

cfd’s and ad’s can be lost by a horizontal decomposition step, whereas fd’s

cannot.

Notation 4.1 In the sequel we treat the horizontal decomposition of a

scheme R = (Ω, C ∪ A), according to X → Y ⊃− X → Z ∈ C, into the

schemes R1 = σX→Y (R) = (Ω, C1 ∪ A1), and R2 = σX ̸̸→Y (R) = (Ω, C2 ∪
A2). We assume that C ∪ A is not in conflict, C ̸|= X→ Y and C ∪ A ̸|=
X ̸̸→ Y . (Otherwise we obtain “trivial” decompositions.) We again do

not consider “complete” sets of dependencies. The sets of dependencies

we shall generate for the subschemes are only generating for the set of all

dependencies, holding in the subschemes.

Since fd’s cannot be violated by taking a selection of a relation we have:
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Remark 4.3 All the fd’s that hold in R also hold in both R1 and R2.

The fd’s of R are not the only fd’s that hold in the subschemes. In R1 for

instance the fd X→ Y Z holds (which does not hold in R if the decompo-

sition is not trivial, i. e. if C ̸|= X→ Y and C ∪A ̸|= X ̸̸→ Y ).

When considering cfd’s and ad’s there always is the danger of introduc-

ing conflict, when modifying the sets of cfd’s and ad’s. However, the

non-trivial horizontal decomposition of a (nonempty) relation cannot gen-

erate sets of dependencies that are in conflict, since the subrelations are

nonempty too. Indeed, if neither X → Y nor X ̸̸→ Y holds in R, then

in most instances r of R the subinstances σX→Y (r) and σX ̸̸→Y (r) will be

nonempty. Therefore we do not have to consider the danger of generating

conflict by decomposing a scheme in the sequel.

For cfd’s and ad’s the inheritance problem is more complicated than for

fd’s. However, similar inclusions can be easily proved:

Lemma 4.6 Using Notation 4.1 we have:

• C1 ⊆ {T → U ⊃− T → V | C ∪A ∪ {X→ Y } |= T→ U ⊃− T→ V }.
• C2 ⊆ {T → U ⊃− T → V | C ∪A ∪ {X ̸̸→ Y } |= T→ U ⊃− T→ V }.
• A1 ⊆ {T ̸̸→ U | C ∪A ∪ {X→ Y } |= T ̸̸→ U}.
• A2 ⊆ {T ̸̸→ U | C ∪A ∪ {X ̸̸→ Y } |= T ̸̸→ U}.

Proof The four cases are somewhat similar:

C1 : Let T → U ⊃− T → V be such that C ∪ A ∪ {X → Y } ̸|= T →
U ⊃− T → V . We show that T → U ⊃− T → V ̸∈ C1, by

constructing an instance r for which T → U ⊃− T → V does not

hold in r1 = σX→ Y (r).

C ∪ A ∪ {X → Y } ̸|= T ̸̸→ U by Theorem 4.7. Hence by Theo-

rem 4.6 C ∪A∪ {X→ Y }∪ {T→ U} is not in conflict and holds

in r = Arm(FSATC∪{X→Y }(T,U)). Since C ∪ A ∪ {X → Y } ̸|=
T → U ⊃− T → V , T ̸̸→ V holds in Arm(FSATC∪{X→Y }(T,U)).

When this instance is decomposed according to X→ Y ⊃− X→
Z then r1 = σX→Y (r) = Arm(FSATC∪{X→Y }(T,U)), in which

T → U ⊃− T → V does not hold (and r2 = Ø ).

C2 : Let T → U ⊃− T → V be such that C ∪ A ∪ {X ̸̸→ Y } ̸|= T →
U ⊃− T → V . Then C ∪A∪ {X ̸̸→ Y } ̸|= T ̸̸→ U by Theorem 4.7
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and hence C ∪ A ∪ {X ̸̸→ Y } ∪ {T → U} is not in conflict by

Theorem 4.6. The r we need know is Arm(FSATC(T,U)).

A1 : If C ∪A∪ {X→ Y } ̸|= T ̸̸→ U then we proceed as in the case for

C1.
A2 : If C ∪A∪ {X ̸̸→ Y } ̸|= T ̸̸→ U then we proceed as in the case for

C2.

Some dependencies are inherited by both R1 and R2. They show a close

resemblance with Lemma 3.2.

Lemma 4.7 Using Notation 4.1, an ad holds in both R1 and R2 if C∪A |=
T ̸̸→ U and C |= T → X. A cfd T → U ⊃− T → V holds in both R1 and

R2 if C ∪A |= T→ U ⊃− T→ V and C |= T → U or C |= T→ X.

Proof Suppose C |= T → X. Consider, in an arbitrary instance r,

an arbitrary T -complete set s of tuples, with a unique value on their T -

projection, (i. e. a T -unique, T -complete set). Because T→ X holds in r, s

is a part of an X-complete set with only one X-value. Hence s ⊆ σX→Y (r)

or s ⊆ σX ̸̸→Y (r), i. e. s cannot be divided into two parts by decomposing r

according to X→ Y ⊃− X→ Z. This means that all the T -complete sets

of r1 and r2 are T -complete sets of r. Hence the cfd T → U ⊃− T → V (or

the ad T ̸̸→ U) cannot be violated in r1 or r2 if it holds in r.

Suppose C |= T → U and C |= T → U ⊃− T → V . Then C |= T → UV

and hence T → UV holds in R1 and R2 since an fd cannot be violated

by taking a restriction. T → UV implies T → U ⊃− T → V , hence

T→ U ⊃− T→ V holds in R1 and R2.

Notation 4.2 We denote the set of the ad’s of A, that are inherited

because of Lemma 4.7, by Â. The set of the cfd’s of C, that are inherited

because of Lemma 4.7 or that are trivial, is denoted by Ĉ. The trivial

cfd’s are included because they represent the goals of Chapters 2 and 3.

They are of no importance for the inheritance problem, and are neglected

in the sequel.

In the proof of the inheritance of cfd’s and ad’s a special instance is needed,

of which the construction is partially described below.
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Lemma 4.8 Consider a set C ∪ A, not being in conflict. Let s be an

instance in which C ∪A holds.

If C ∪A∪ {P ̸̸→ Q} is not in conflict, then there is an instance r in which

C ∪A still holds, which contains s as a subset, and in which the ad P ̸̸→ Q

holds (and hence also every cfd P → Q ⊃− P → O).

Proof A T -complete set of tuples, all having the same T -projection, in

which the ad T ̸̸→ U does not hold (hence in which T → U holds) is called

a violation of T ̸̸→ U . A T -complete set of tuples, all having the same

T -projection, in which T → U and T ̸̸→ V hold is called a violation of

T→ U ⊃− T→ V .

Let P ̸̸→ Q not hold in s. Construct Arm(FSATC(Ø,Ø )), and suppose

that the domains of Arm(FSATC(Ø,Ø )) and s are disjoint. Suppose also

that in Arm(FSATC(Ø,Ø )) the domains of the attributes all are disjoint.

Let P = {A | C |= P → A}. Let t be a tuple in an arbitrary violation of

P ̸̸→ Q (in s). Let u be an arbitrary tuple of Arm(FSATC(Ø,Ø )). The

domain of Arm(FSATC(Ø,Ø )) is changed such that u[P ] := t[P ]. Let the

adapted Armstrong relation be called s′.

Let r = s∪ s′. In r, C holds, since C holds in s and s′, and since if V ̸⊂ P

then V → W , for which C |= V → W , still holds because no tuple of s′ has
the same V -projection as any tuple of s, and if V ⊆ P then V → W , for

which C |= V → W , still holds because also W ⊆ P and if the V -projection

of a tuple of s and of a tuple of s′ are equal then this projection is t[V ],

and hence for the tuple of s and the tuple of s′ the W -projection is t[W ]

by the construction of s′. If for V → W ⊃− V → W ′ ∈ C V → W does not

hold, then in s′ V ̸̸→ W holds, hence in r V → W ⊃− V → W ′ still holds.

In r, A holds since A holds in s and s′ and since ad’s cannot be violated

by taking a union.

In s′, P ̸̸→ Q holds, hence s′ does not contain any violation of P ̸̸→ Q. In

r the violation of P ̸̸→ Q (in s) that contains t is no longer a violation of

P ̸̸→ Q. Hence in r the number of violations of P ̸̸→ Q is (strictly) less

than in s.

By repeating the above construction until there are no violations of P ̸̸→ Q

any more (in the final r), one establishes an instance r in which P ̸̸→ Q

holds, and which still contains s as a subset.
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It is obvious that when P ̸̸→ Q holds, then also P→ Q ⊃− P → O, by the

definition of cfd’s (and also expressed by rule CA2).

The above construction is more or less the same as for fd’s and ad’s.

Similar constructions will appear in the next chapters.

Lemma 4.9 Let C ∪ A be not in conflict. Let s be an instance in which

Ĉ ∪ Â holds. Then there exists an instance r, containing s as a subset,

and in which C ∪A holds.

Proof r can be obtained by repeating the construction of the proof of

Lemma 4.8 for every ad of A−Â and every cfd of C− Ĉ. The final instance
r satisfies C ∪A.

Theorem 4.8 Using Notation 4.1 and 4.2, a cfd or ad must hold in R1

(resp. R2) iff it is a consequence of Ĉ ∪ Â ∪ {X → Y } (resp. Ĉ ∪ Â∪
{X ̸̸→ Y }).

Proof From Lemma 4.6 and 4.7 it follows that (Ĉ ∪ Â ∪ {X→ Y })∗ ⊆
(C1∪A1)

∗ ⊆ (C ∪A∪ {X→ Y })∗ and (Ĉ ∪ Â∪ {X ̸̸→ Y })∗ ⊆ (C2∪A2)
∗ ⊆

(C ∪A ∪ {X ̸̸→ Y })∗.

The proof has to cover 4 cases: a cfd and an ad, in R1 and in R2.

1. Consider an ad T ̸̸→ U ∈ (C∪A∪{X→ Y })∗−(Ĉ∪Â∪{X→ Y })∗. We

prove that T ̸̸→ U ̸∈ (C1∪A1)
∗. Since T ̸̸→ U ̸∈ (Ĉ∪Â∪{X→ Y })∗, Ĉ∪

Â∪{X→ Y }∪{T → U} is not in conflict, by Theorem 4.6. Hence there

exists an instance s in which Ĉ∪Â∪{X→ Y }∪{T→ U} holds. By the

construction of Lemma 4.9 an instance r can be build which contains s

and in which C ∪A holds. In this construction (explained in the proof

of Lemma 4.8) a number of modified copies of Arm(FSATC(Ø,Ø )) are

added to s. Since X ̸̸→ Y holds in Arm(FSATC(Ø,Ø )), and since

C ̸|= T → X, r1 = σX→Y (r) = s. Hence in r1 T ̸̸→ U does not hold,

which means that T ̸̸→ U ̸∈ (C1 ∪A1)
∗.

2. Consider a cfd T→ U ⊃− T→ V ∈ (C∪A∪{X→ Y })∗−(Ĉ∪Â∪{X→
Y })∗. We prove that T → U ⊃− T → V ̸∈ (C1 ∪A1)

∗. Since T→ U ⊃−
T → V ̸∈ (Ĉ ∪ Â∪ {X→ Y })∗, Ĉ ∪ Â∪ {X→ Y }∪ {T→ U} cannot be

in conflict. (Otherwise Ĉ ∪ Â ∪ {X→ Y } |= T ̸̸→ U which contradicts

with Ĉ ∪ Â ∪ {X → Y } ̸|= T → U ⊃− T → V (by Theorem 4.7).)



4.3. The Inheritance of cfd’s and ad’s 79

Ĉ∪Â∪{X→ Y }∪{T → U}∪{T ̸̸→ V } cannot be in conflict either, since

T → V ̸∈ FSATĈ∪{X→Y }(T,U), (hence Ĉ ∪ Â ∪ {X→ Y } ∪ {T → U}∪
{T ̸̸→ V } holds in Arm(FSATĈ∪{X→Y }(T,U)) ). There exists a set s

of tuples, in which Ĉ ∪ Â ∪ {X → Y } ∪ {T → U} ∪ {T ̸̸→ V } holds.

By Lemma 4.9 one can construct an instance r, containing s, in which

C ∪ A holds. r1 = σX→Y (r) = s, hence T → U ⊃− T → V does not

hold in r1. This means that T → U ⊃− T → V ̸∈ (C1 ∪A1)
∗.

3. Consider an ad T ̸̸→ U ∈ (C∪A∪{X ̸̸→ Y })∗−(Ĉ∪Â∪{X ̸̸→ Y })∗. We

prove that T ̸̸→ U ̸∈ (C2 ∪A2)
∗. Since T ̸̸→ U ̸∈ (Ĉ ∪ Â ∪ {X ̸̸→ Y })∗,

Ĉ ∪ Â∪ {X ̸̸→ Y }∪ {T→ U} is not in conflict, by Theorem 4.6. Hence

there exists an instance s in which Ĉ ∪ Â∪ {X ̸̸→ Y }∪ {T→ U} holds.

By a construction, very similar to that of Lemma 4.8 an instance r can

be build which contains s and in which C ∪ A is satisfied. To obtain

that σX ̸̸→Y (r) = s one must use modified copies of Arm(FSATĈ(X,Y ))

instead of Arm(FSATĈ(Ø,Ø )). In r2 = σX ̸̸→Y (r), T→ U holds, hence

T ̸̸→ U ̸∈ (C2 ∪A2)
∗.

The above argument relies on the observation that T ̸̸→ U holds in

Arm(FSATĈ(X,Y )), i. e. that Ĉ ∪ {X → Y } ̸|= T → U . Suppose

Ĉ ∪ {X→ Y } |= T → U (hence T → U ∈ FSATĈ(X,Y )). We also have

that C ∪A ∪ {X ̸̸→ Y } |= T ̸̸→ U . T → U ∈ FSATĈ(X,Y ) means that

Ĉ |= T → X, by Lemma4.3. If C ∪A |= T ̸̸→ U then T ̸̸→ U is inherited

because of Lemma 4.7. Since T ̸̸→ U ̸∈ Â, this is not the case, hence

C∪A ̸|= T ̸̸→ U . By the proof of Theorem 4.6 C∪A∪{X ̸̸→ Y } |= T ̸̸→ U

and C ∪ A ̸|= T ̸̸→ U imply C ∪ {X ̸̸→ Y } |= T ̸̸→ U , and hence also

C ∪ {T → U} |= X → Y (by the proof of Theorem 4.6 again). To

deduce X → Y from C ∪ {T → U}, only cfd’s P → Q ⊃− P → O ∈ C
for which C |= P → Q or C |= P → T can be used. Since Ĉ |= T → X

these cfd’s all are in Ĉ (P → T and T → X induce P → X). Hence

Ĉ ∪ {T → U} |= X → Y , or, by the proof of Theorem 4.6, Ĉ ∪ {X
̸̸→ Y } |= T ̸̸→ U , which contradicts with Ĉ ∪ Â ∪ {X ̸̸→ Y } ̸|= T ̸̸→ U .

4. Consider a cfd T → U ⊃− T → V ∈ (C ∪ A ∪ {X ̸̸→ Y })∗ − (Ĉ ∪ Â∪
{X ̸̸→ Y })∗. Since T → U ⊃− T → V ̸∈ (Ĉ ∪ Â ∪ {X ̸̸→ Y })∗, Ĉ ∪ Â∪
{X ̸̸→ Y } ∪ {T → U} ∪ {T ̸̸→ V } cannot be in conflict (for the same

reason as for a cfd in R1). The same construction as in case 3 now
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produces an instance such that in r2 T → U and T ̸̸→ V hold. Hence

T → U ⊃− T → V ̸∈ (C2 ∪A2)
∗.

From Theorem 4.8 one can easily deduce an algorithm which calculates

generating sets for the inherited dependencies, and which takes polynomial

time only, since it is not necessary to calculate the closure (i.e. the set of

all the consequences) of a set of dependencies.

Algorithm 4.5 A Horizontal Decomposition Step with cfd’s and ad’s

Input: R = (Ω, C∪A) and a cfd X→ Y ⊃− X→ Z ∈ C. C∪A is assumed

not to be in conflict, C ̸|= X→ Y and C ∪A ̸|= X ̸̸→ Y .

Output: An ordered pair of schemes (R1 = (Ω, C1 ∪ A1), R2 = (Ω, C2 ∪
A2)), being the decomposition of R according to X→ Y ⊃− X→ Z.

Method:

var Ĉ, Ĉ1, Ĉ2 : set of cfd’s := Ø

Â : set of ad’s := Ø

begin

for each T→ U ⊃− T→ V ∈ C do

if C |= T → U or C |= T → X or V ⊆ TU

then

Ĉ := Ĉ ∪ {T → U ⊃− T → V }
od

for each T ̸̸→ U ∈ A do

if C |= T → X

then

Â := Â ∪ {T ̸̸→ U}
od

for each T→ U ⊃− T→ V ∈ Ĉ do

if Ĉ ∪ {X→ Y Z} ̸|= T → U and Ĉ ∪ Â ∪ {X→ Y Z} ̸|= T ̸̸→ U

then

Ĉ1 := Ĉ1 ∪ {T → U ⊃− T → V }
od

for each T→ U ⊃− T→ V ∈ Ĉ do

if Ĉ ̸|= T → U and Ĉ ∪ Â ∪ {X ̸̸→ Y } ̸|= T ̸̸→ U

then
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Ĉ2 := Ĉ2 ∪ {T → U ⊃− T → V }
od

return(R1 = (Ω, Ĉ1 ∪ {X→ Y Z} ∪ Â), R2 = (Ω, Ĉ2 ∪ Â ∪ {X ̸̸→ Y }))
end

In this algorithm, we used that the presence of ad’s has no effect on the

membership problem for fd’s (expressed as cfd’s), i. e. C |= T → U iff

C ∪A |= T → U . This follows immediately from Theorem 4.7.

If n = ♯C, m = ♯A and r = ♯Ω, one can easily see that the time-complexity

of Algorithm 4.5 is n times the complexity of a cfd-membership test plus

m times the complexity of an ad-membership test, i. e. O(n4r2+n3m2r2).

4.4 The “Conditional” Normal Form

In this section we illustrate an algorithm for horizontal decomposition

of a relation scheme, according to its cfd’s. The algorithm decomposes

the scheme (and subschemes) until no subscheme can be decomposed any

further. This is formalized by defining a normal form.

Definition 4.5 A scheme R = (Ω, C ∪ A) is said to be in Conditional

Normal Form (CNF) iff for all X→ Y ⊃− X→ Z ∈ C holds C ∪A |= X→
Y or C ∪A |= X ̸̸→ Y .

A decomposition (R1, . . . , Rn) is in CNF iff all the Ri, i = 1 . . . n, are in

CNF.

Since the horizontal decomposition is based on real constraints, there is

no way to define the inheritance differently, as was possible with goals.

However, for the “trivial” cfd’s, the choice of explicitly inheriting the triv-

ial cfd’s is arbitrary. If we would include all trivial cfd’s in the sets C1 and

C2 we obtain the trivial decompositions of Section 3.3. In Algorithm 4.5

we have defined that the trivial cfd’s are inherited in the same way as in

the inherited decomposition steps of Section 3.3. Hence the horizontal de-

composition into Conditional Normal Form is equivalent to the inherited

decomposition into Horizontal Normal Form if only trivial cfd’s are given.

From this definition the construction of a decomposition algorithm, which

decomposes a relation scheme according to a cfd, and then decomposes the
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subschemes further on, until all subschemes are in CNF, is straightforward.

To illustrate the horizontal decomposition into CNF, we modify Exam-

ple 2.1:

Example 4.2 Recall Example 2.1. In Section 4.1 we showed that the

relation scheme STAFF is likely to satisfy emp→ job man dep div ⊃−
emp ⊃− sal. We represent some of the goals as trivial cfd’s: emp →
job ⊃− emp → job and man → div ⊃− man → div. We no longer

consider the fd emp job → sal since that is a stronger constraint than

our cfd. Figure 4.1 shows a decomposition tree for the decomposition of

STAFF into CNF. The sets of cfd’s and ad’s we give are not exactly the

sets generated by Algorithm 4.5. We removed redundant elements, and

combined constraints, to keep the figure as small as possible.

Table 4.1 shows the instance of Table 2.1, with a small modification: in

Example 2.1 we choose to split up an employee’s salary if he has more

than one job. It is only natural to do the same if an employee works for

more than one department or division. This however was forbidden by the

fd emp job→ sal, which we have now abandoned. Table 4.1 now shows

more than one salary for Goldstein (but accidently not for Shapiro).

After the decomposition into CNF the following subinstances are obtained:

staff111 contains the employees having only one job, one manager, one

department and one division (and hence also only one salary), and whose

manager has only one division for these employees.

staff111 =
emp job man sal dep div

Wallace accountant Brown 2000 sales Los Angeles

Diamond accountant Brown 1500 sales Los Angeles

Brown sales manager Goldstein 3000 sales Los Angeles

Eltman carrier Kedesdy 1000 stock Los Angeles

Kedesdy accountant Brown 2000 stock Los Angeles

Carlson chauffeur Kedesdy 1500 stock Los Angeles

Pike secretary Kedesdy 1300 stock Los Angeles

staff112 contains the same kind of employees as staff111, but whosemanager

has more than one division for these employees.
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STAFF
emp→ job ⊃− emp→ job

emp→ job man dep div ⊃− emp→ sal
man→ div ⊃− man→ div

❄

emp→ job ⊃− emp→ job
✓
✒

✏
✑✟✟✟✙

❍❍❍❥

STAFF1
emp→ job

emp→ job man dep div ⊃− emp→ sal
man→ div ⊃− man→ div

STAFF2
emp ̸̸→ job

man→ div ⊃− man→ div

❄✓
✒

✏
✑emp→ job man dep div ⊃− emp→ sal

✁
✁
✁
✁☛

❆
❆
❆
❆❯

STAFF11
emp→ Ω

man→ div ⊃− man→ div

STAFF12
emp→ job

emp ̸̸→ job man dep div
man→ div ⊃− man→ div❄✓

✒
✏
✑man→ div ⊃− man→ div

00✠ ❅❅❘

STAFF111
emp→ Ω
man→ div

STAFF112
emp→ Ω
man ̸̸→ div

❄✓
✒

✏
✑man→ div ⊃− man→ div

00✠ ❅❅❘

STAFF121
emp→ job
man→ div

STAFF122
emp→ job
man ̸̸→ div

❄✓
✒

✏
✑man→ div ⊃− man→ div

00✠ ❅❅❘

STAFF21
emp ̸̸→ job
man→ div

STAFF22
emp ̸̸→ job
man ̸̸→ div

Figure 4.1: A decomposition tree for STAFF , into CNF.

staff112 =
emp job man sal dep div

Pierce accountant Shapiro 1500 sales Santa Barbara

Jones chauffeur Shapiro 1000 sales Santa Barbara

Matthews accountant Shapiro 1600 sales Bakersfield

In Example 2.1 staff12 could not be decomposed any more becauseman→? div

was not clean. We do not consider “clean cfd’s” and hence can decompose

staff12:
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emp job man sal dep div

Wallace accountant Brown 2000 sales Los Angeles

Diamond accountant Brown 1500 sales Los Angeles

Murrel secretary Wallace 1000 sales Los Angeles

Murrel secretary Diamond 1000 sales Los Angeles

Murrel secretary Brown 1000 sales Los Angeles

Brown sales manager Goldstein 3000 sales Los Angeles

Goldstein gen. manager Goldstein 1200 sales Los Angeles

Eltman carrier Kedesdy 1000 stock Los Angeles

Kedesdy accountant Brown 2000 stock Los Angeles

Carlson chauffeur Kedesdy 1500 stock Los Angeles

Pike secretary Kedesdy 1300 stock Los Angeles

Goldstein gen. manager Goldstein 800 stock Los Angeles

Pierce accountant Shapiro 1500 sales Santa Barbara

Goodwin secretary Pierce 1000 sales Santa Barbara

Goodwin secretary Shapiro 1000 sales Santa Barbara

Jones chauffeur Shapiro 1000 sales Santa Barbara

Shapiro accountant Shapiro 1000 sales Santa Barbara

Shapiro sales manager Goldstein 1000 sales Santa Barbara

Goldstein gen. manager Goldstein 1000 sales Santa Barbara

Matthews accountant Shapiro 1600 sales Bakersfield

Tyrrell chauffeur Shapiro 1000 sales Bakersfield

Tyrrell carrier Shapiro 800 sales Bakersfield

Shapiro sales manager Goldstein 1000 sales Bakersfield

Goldstein gen. manager Goldstein 1000 sales Bakersfield

Table 4.1: Instance for STAFF (with cfd’s).
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staff121 contains the employees with only one job, but with more than

one manager, department or division, and whose manager has only one

division for these employees.

staff121 =
emp job man sal dep div

Murrel secretary Wallace 1000 sales Los Angeles

Murrel secretary Diamond 1000 sales Los Angeles

Murrel secretary Brown 1000 sales Los Angeles

Goodwin secretary Pierce 1000 sales Santa Barbara

Goodwin secretary Shapiro 1000 sales Santa Barbara

staff122 contains the employees with only one job, but with more than one

manager, department or division, and whose manager has more than one

division for these employees.

staff122 =
emp job man sal dep div

Goldstein gen. manager Goldstein 1200 sales Los Angeles

Goldstein gen. manager Goldstein 800 stock Los Angeles

Goldstein gen. manager Goldstein 1000 sales Santa Barbara

Goldstein gen. manager Goldstein 1000 sales Bakersfield

staff21 contains the employees with more than one job, and whosemanager

has only one division for these employees. The cfd emp→ job man dep div ⊃−
emp→ sal cannot be used since emp ̸̸→ job implies emp ̸̸→ job man dep div.

The way the salaries are stored is no longer important: the cfd avoids the

generation of empty subinstances.

staff21 =
emp job man sal dep div

Tyrrell chauffeur Shapiro 1000 sales Bakersfield

Tyrrell carrier Shapiro 800 sales Bakersfield

staff22 contains the employees having more than one job and whosemanager

has more than one division.
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staff22 =
emp job man sal dep div

Shapiro accountant Shapiro 1000 sales Santa Barbara

Shapiro sales manager Goldstein 1000 sales Santa Barbara

Shapiro sales manager Goldstein 1000 sales Bakersfield

When one compares the subinstances of staff with those of Example 2.1

one notes that with cfd’s the same subinstances are obtained without

generating any additional empty instances.



Chapter 5

Decomposition with ifd’s

The horizontal decomposition according to cfd’s is capable of represent-

ing the decomposition with goals, but the cfd’s as constraints are quite

restrictive: the two fd’s X→ Y and X→ Z in the cfd X→ Y ⊃− X→ Z

must have the same left hand side X. The reason for this restriction is

that when decomposing the relation to obtain X→ Y , we want to gener-

ate the “implied” fd X → Z in the first subrelation. The easiest way to

obtain this result is to let both fd’s have the same left hand side, but this

is certainly not a necessary condition.

This chapter covers [14]. The horizontal decomposition according to X→
Y ⊃− X → Z splits r into two X-complete sets of tuples. If we make

sure that the X-complete sets of tuples are also complete for the left hand

side of the implied fd, then this fd will hold in the first subrelation. We

formalize this weaker (and hence more general) kind of constraint below.

5.1 Imposed-Functional Dependencies

Let us first recall Example 2.1. In the previous chapter we already in-

dicated that the cfd emp→ job man dep div ⊃− emp→ sal was more

appropriate than the fd emp job→ sal. Some other implications between

fd’s may hold: emp→ job ⊃− emp man dep div→ sal means that if an

employee has only one job, then he can have only one salary for every

manager, department and division for which he works. This constraint

is not a cfd, and also is not equivalent to the given cfd: it is weaker; a

greater part of the database may satisfy the first fd.

87
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Definition 5.1 Let R be a relation scheme, X,X ′, Y, Z ⊆ Ω and X ⊆ X ′.

• A relation instance r of R satisfies the imposed-functional dependency

(ifd) X→ Y ⊃− X ′→ Z iff in every X-complete set of tuples in r, in

which the fd X→ Y holds, the fd X ′→ Z must hold too.

• The scheme R satisfies X → Y ⊃− X ′ → Z iff all the instances of R

satisfy X→ Y ⊃− X ′→ Z.

The ifd’s contain the (cfd’s) since cfd’s are ifd’s X→ Y ⊃− X ′→ Z with

X = X ′. They also contain the fd’s as a subclass. An fd T → U is

equivalent to the ifd Ø→ Ø ⊃− T → U (which is not a cfd) as well as a

large number of other ifd’s, e. g. T → T ⊃− T → U (which is a cfd). We

usually denote an fd as fd, and not as a special ifd.

The condition X ⊆ X ′ is still a rather strong condition, and certainly is

not a necessary condition. From Lemma 4.7 we already know that X ′→ X

is still a sufficient condition for the fd X ′→ Z to hold in σX→Y (R). This

leads to the following definition:

Definition 5.2 Let R be a relation scheme, X,X ′Y, Z ⊆ Ω.

• A relation instance r of R satisfies the generalized imposed-functional

dependency (gifd) X→ Y ⊃− X ′ → Z iff X ′ → X holds in r and if in

every X-complete set of tuples in r, in which the fd X→ Y holds, the

fd X ′→ Z must hold too.

• The scheme R satisfies X → Y ⊃− X ′ → Z iff all the instances of R

satisfy X→ Y ⊃− X ′→ Z.

The class of the gifd’s contains the ifd’s as a subclass, and some gifd’s

cannot be expressed by means of an ifd. However, the following remark

shows that we can simulate a gifd by means of an ifd and an fd. Hence

the gifd’s are not more powerful than the ifd’s, so we only discuss ifd’s in

this chapter.

Remark 5.1 The gifd X→ Y ⊃− X ′→ Z (with X ′→ Z) is equivalent to

the ifd X→ Y ⊃− XX ′→ Z together with the fd X ′→ X.

Definition 5.3 The horizontal decomposition of a scheme R, according

to the ifd X → Y ⊃− X ′ → Z, is the ordered pair (R1, R2), where R1 =

σX→Y (R) and R2 = R −R1.
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Note that the horizontal decomposition of a scheme, according to X →
Y ⊃− X ′→ Z does not depend on X ′ or Z, but it induces the fd X ′→ Z

in R1, as follows from Lemma 4.7. In R2, ad X ̸̸→ Y holds (but nothing

is known about X ′ and Z).

From now on we shall assume that the set SC of constraints of a relation

scheme R consists of a set I of ifd’s and a set A of ad’s.

When Z −X ′ ⊆ Y −X the ifd X→ Y ⊃− X ′ → Z is “trivial”, and can

be used to simulate the horizontal decomposition based on goals.

The calculation of the constraints that hold in the selections of R is de-

scribed in Section 5.3. It is very similar to the inheritance problem for

cfd’s.

Since fd’s and cfd’s are “special” ifd’s, the conflict-problem of cfd’s and

ad’s also occurs with ifd’s and ad’s. Before we give a conflict-detection

algorithm, we show the construction of Armstrong relations for fd’s, con-

sidering the presence of ifd’s.

Definition 5.4 Let I be a set of ifd’s over a set Ω of attributes. A strong

Armstrong relation for I is a strong Armstrong relation for the set of all

fd’s that are a consequence of I.

The proof of the construction of a (strong) Armstrong relation for I again

relies on the following special set of fd’s:

Definition 5.5 FSATI(X,Y ) is the smallest possible set of fd’s, such

that:

1. X→ Y ∈ FSATI(X,Y ).

2. If T → U ∈ FSATI(X,Y ) and T → U ⊃− T ′→ V ∈ I then T ′→ V ∈
FSATI(X,Y ).

3. If FSATI(X,Y ) |= T → V then T → V ∈ FSATI(X,Y ).

FSATI(X,Y ) can be constructed starting from {X → Y } by repeatedly

trying to satisfy 2 and 3 of the definition.

Lemma 5.1 Let I be a set of ifd’s over Ω, T, V,X, Y ⊆ Ω. T → V ∈
FSATI(X,Y ) iff I ∪ {X→ Y } |= T → V }.
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Proof This proof is omitted, since it would be almost identical to the

proof of Lemma 4.1.

From Theorem 2.1 and the above lemma one can easily deduce that

Theorem 5.1 Let I be a set of ifd’s Arm(FSATI(Ø,Ø )) is a strong

Armstrong relation for I. In other words, for all T,U ⊆ Ω holds that

I |= T→ U iff T → U ∈ FSATI(Ø,Ø ).

From the above Lemma and Theorem immediately follows that if Y ⊆ X

then FSATI(X,Y ) is the set of all fd’s that are consequences of I. We

usually denote this set by FSATI(Ø,Ø ).

Note also that for allX,Y the sets FSATI∪{X→Y }(Ø,Ø ) and FSATI(X,Y )

are equal.

With the Armstrong relation for I, we can prove the following theorem

and algorithm, exactly as for cfd’s:

Theorem 5.2 I ∪A is in conflict iff for some ad X ̸̸→ Y of A, I |= X→
Y holds.

Algorithm 5.1 Conflict Detection

Input: I,A, a set of ifd’s and a set of ad’s.

Output: true or false.

Method:

for each T ̸̸→ U in A do

if I |= T → U

then

return(true) { and exit }
od

return(false) { only reached if for-loop is done }

In the above algorithm we did not explain how to verify whether I |=
T → U . This means verifying whether T → U ∈ FSATI(Ø,Ø ), and is

part of Algorithm 4.2. The construction of the corresponding algorithm

for FSAT in the case of ifd’s is very similar, and therefor omitted. The

time-complexity of that algorithm is O(n3r2) where n = ♯I and r = ♯Ω.
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The time- complexity of Algorithm 5.1 then becomes O(n3r2m) where

m = ♯A.

5.2 The Implication Problem for ifd’s and ad’s

As in the previous chapter, we solve the implication problem for ifd’s and

ad’s by means of the tools FSAT , the Armstrong relation, and a set of

inference rules. We solve the implication problem for ifd’s (only) first. For

ifd’s we have the following inference rules:

(I0) : if Y ⊆ X, Y ′ ⊆ X ′, X ⊆ X ′′, X ′ ⊆ X ′′ and X→ Y ⊃− X ′′→ Z

then X ′→ Y ′ ⊃− X ′′→ Z.

(I1) : if Z −X ′ ⊆ Y −X and X ⊆ X ′ then X→ Y ⊃− X ′→ Z.

(I2) : if X→ Y ⊃− X ′→ Z and W ⊆ V then X→ Y ⊃− X ′V → ZW .

(I3) : if X→ Y ⊃− X ′→ X ′′ and X→ Y ⊃− X ′′→ Z then X→ Y ⊃−
X ′→ Z.

(I4) : if X→ Y ⊃− X ′→ Z and X ′→ Z ⊃− X ′′→ T then X→ Y ⊃−
X ′′→ T .

(I5) : if X→ Y ⊃− X ′→ Z and X→ X ′′ then X ′′→ Y ⊃− X ′X ′′→ Z.

As fd’s and cfd’s are special ifd’s, the use of fd’s in these rules is allowed.

Rules I0 shows the equivalence of the different possibilities to represent

the same fd. The classical inference rules for fd’s and the inference rules

for cfd’s can be deduced from I1, . . . , I5 as follows:

Lemma 5.2 The rules I0, . . . , I5 are complete for cfd’s (and hence also

for fd’s).

Proof To prove this completeness we show how to prove C1, . . . , C5

using I0, . . . I5. We are free to denote fd’s in any way we like, according

to rule I0.

C1 : There are 2 possibilities:

1. If Z ⊆ XY then X→ Y ⊃− X→ Z holds by I1.

2. If XY → Z, then I0 lets us write this fd as X→ X ⊃− XY →
Z.

• X→ Y ⊃− X→ X (I1) and X→ X ⊃− XY → Z induce

X→ Y ⊃− XY → Z by I4.
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• X → Y ⊃− X → XY (I1) and X → Y ⊃− XY → Z

induce X→ Y ⊃− X→ Z by I3.

C2 : Let X → Y ⊃− X → Z and X → Y ⊃− X → T . We prove

X→ Y ⊃− X→ TZ:

• X→ Y ⊃− X→ Z induces X→ Y ⊃− X→ XZ, by I2.

• X→ Y ⊃− X→ T induces X→ Y ⊃− XZ→ T , by I2.

• X → Y ⊃− X → XZ and X → Y ⊃− XZ → T induce

X→ Y ⊃− X→ T by I3.

C3 : Let X→ Y ⊃− X→ Z and Z→ T . We proveX→ Y ⊃− X→ T :

• X→ Y ⊃− X→ Z induces X→ Y ⊃− X→ XZ by I2.

• Ø→ Ø ⊃− Z→ T (this is Z→ T ) and Ø→ Ø ⊃− XZ→ Z

(I1) induce Ø→ Ø ⊃− XZ→ T by I3.

• Rule I0 allows us to write this fd as X → X ⊃− XZ → T .

X → Y ⊃− X → X (I1) and X → X ⊃− XZ → T induce

X→ Y ⊃− XZ→ T by I4.

• X → Y ⊃− X → XZ and X → Y ⊃− XZ → T induce

X→ Y ⊃− X→ T by I3.

C4 : is a special case of I4 where X = X ′ = X ′′.
C5 : Let X → Y ⊃− X → Z, W → Y ⊃− W → X and X → W . We

prove W → Y ⊃− W → Z:

• X→ Y ⊃− X→ Z and X→ W induce W → Y ⊃− XW → Z

by I5.

• W → Y ⊃− W → X and W → X ⊃− W → XW (I1) induce

W → Y ⊃− W→ XW by I4.

• W → Y ⊃− W → XW and W → Y ⊃− XW → Z induce

W → Y ⊃− W→ Z by I3.

Note that for cfd’s a rather strange rule C5 was necessary to change the

left hand side of the fd’s, i. e. to change X → Y into W → Y . With the

ifd’s this is much easier: rule I5 is in fact the “equivalent” to C5.

Note also that rules C2 and I2 differ. This is a variation on the classical

theme: augmentation (like I2) versus union rule (C2). One can easily

prove that rule I2 can be replaced by:

(I2′) : if X→ Y ⊃− X ′ → Z and X→ Y ⊃− X ′ → T then X→ Y ⊃−
X ′→ ZT .
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Rule I2′ can be easily proved:

• X→ Y ⊃− X ′→ Z induces X→ Y ⊃− X ′→ X ′Z by I2.

• X→ Y ⊃− X ′→ T induces X→ Y ⊃− X ′Z→ ZT by I2.

• X→ Y ⊃− X ′ → X ′Z and X→ Y ⊃− X ′Z→ ZT induce X→ Y ⊃−
X ′→ ZT by I3.

Also, rule I2 can be easily proved using I2′:

• X→ Y ⊃− X ′→ Z and X→ Y ⊃− X ′V → X ′ (I1) induce X→ Y ⊃−
X ′V → Z by I3.

• W ⊆ X ′V induces X→ X ⊃− X ′V ⊃− W by I1.

• X → Y ⊃− X → X (I1) and X → X ⊃− X ′V ⊃− W induce X →
Y ⊃− X ′V ⊃− W by I4.

• Finally, X → Y ⊃− X ′V → Z and X → Y ⊃− X ′V → W induce

X→ Y ⊃− X ′V → ZW by I2′.

Since C5 is not needed for the completeness for fd’s and I5 is only used

in the proof of C5, we conclude that I0 . . . I4 are complete for fd’s.

Theorem 5.3 The rules I0 . . . I5 are sound.

Proof This is very straightforward, and left to the reader. The proof

follows the same argumentation as in Theorem 4.3.

The proof of the completeness of I0 . . . I5 for ifd’s relies on similar prop-

erties of FSATI(X,Y ) to those given in Lemmas 4.3 and 4.4.

Lemma 5.3 If P → Q ∈ FSATI(X,Y ) then I ⊢ P → Q or I ⊢ P → X.

Proof Let I = {Xi→ Yi ⊃− X ′
i→ Zi : i = 1 . . . n}.

For P → Q = X → Y this property is trivial. We prove that it remains

valid during the construction of FSATI(X,Y ) by repeatedly trying to

satisfy 2 and 3 of Definition 5.5.

• Let part 2 be the reason that P → Q is in FSATI(X,Y ). Then for some

i, P = X ′
i and Q = Zi and by induction I ⊢ Xi→ Yi or I ⊢ Xi→ X.

– If I ⊢ Xi→ Yi = Xi→ Xi ⊃− Xi→ Yi then Xi→ Xi ⊃− Xi→ Yi
and Xi → Yi ⊃− X ′

i → Zi induce Xi → Xi ⊃− X ′
i → Zi by I4.

Hence I ⊢ X ′
i→ Zi = P→ Q.

– If I ⊢ Xi → X then X ′
i → X holds by augmentation, (which is a

consequence of I0 . . . I4) , since X ⊆ X ′.
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• Let part 3 be the reason for P → Q to be in FSATI(X,Y ). Then there

are three possibilities (corresponding to the three well known inference

rules for fd’s):

1. If Q ⊆ P , then I ⊢ P → P ⊃− P→ Q = P → Q by I1.

2. If P = P1P2, Q = Q1Q2, Q2 ⊆ P2 and P1→ Q1 ∈ FSATI(X,Y )

then I ⊢ P1→ Q1 or I ⊢ P1→ X by induction, hence I ⊢ P1P2→
Q1Q2 = P→ Q or I ⊢ P1P2→ X = P→ X by augmentation.

3. If P → O and O→ Q ∈ FSATI(X,Y ) then I ⊢ P → O or P → X

and I ⊢ O → Q or O → X by induction. Using the transitivity

rule for fd’s (a consequence of I0 . . . I4) we obtain I ⊢ P → Q or

I ⊢ P→ X.

The proof is completed by remarking that reflexivity, augmentation and

transitivity are complete for fd’s.

Lemma 5.4 If I |= X ′→ X then I ⊢ X→ Y ⊃− XX ′→ Z iff X ′→ Z ∈
FSATI(X,Y ). (We write XX ′ to make sure that X ⊆ XX ′).

Proof If I ⊢ X → Y ⊃− XX ′ → Z then I |= X → Y ⊃− XX ′ → Z

because I0 . . . I5 are sound. Hence I ∪ {X → Y } |= XX ′ → Z which

implies that XX ′ → Z ∈ FSATI(X,Y ) by Lemma 5.1. XX ′ → Z and

X ′→ X induce X ′→ Z hence X ′→ Z ∈ FSATI(X,Y ).

For the converse we give the same kind of proof as in the previous lemma.

Let I = {Xi→ Yi ⊃− X ′
i→ Zi | i = 1 . . . n}.

If X ′→ Z = X→ Y then I ⊢ X→ Y ⊃− XX ′→ Z by I1.

We prove that the property of the lemma remains valid during the con-

struction of FSATI(X,Y ) by repeatedly trying to satisfy 2 and 3 of Defi-

nition 5.5.

• Let part 2 be the reason for X ′ → Z to be in FSATI(X,Y ). Then

for some i, X ′ = X ′
i and Z = Zi and Xi → Yi ∈ FSATI(X,Y ). By

Lemma 5.3 I ⊢ Xi→ Yi (and X ′
i→ Zi) or I ⊢ Xi→ X.

1. If I ⊢ Xi → Yi (and hence I ⊢ X ′
i → Zi = X ′ → Z and hence

XX ′→ Z by augmentation) then I ⊢ X→ Y ⊃− XX ′→ Z by I4

(on X→ Y ⊃− X→ X and X→ X ⊃− XX ′→ Z).
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2. If I ⊢ Xi→ X then X→ Y ⊃− XXi→ Yi (holding by induction),

and XXi→ Yi ⊃− XX ′
i→ Zi induce X→ Y ⊃− XX ′

i→ Zi = X→
Y ⊃− XX ′→ Z by I4. (XXi→ Yi ⊃− XX ′

i→ Zi is derived by I5

from Xi→ Yi ⊃− X ′
i→ Zi and Xi→ X.)

• Let part 3 be the reason for X ′→ Z to be in FSATI(X,Y ). There are

three possibilities:

1. If Z ⊆ X ′ then I ⊢ X→ Y ⊃− XX ′→ Z by I1.

2. IfX ′ = X ′′X ′′′, Z = Z ′Z ′′, Z ′′ ⊆ X ′′′ andX ′′→ Z ′ ∈ FSATI(X,Y )

then by induction (if X ′′→ X) or by I0 (if X ′′→ Z ′) we know that

I ⊢ X → Y ⊃− XX ′′ → Z ′. Since Z ′′ ⊆ X ′′′ rule I2 generates

X→ Y ⊃− XX ′′X ′′′→ Z ′Z ′′.
3. If X ′→ U and U→ Z ∈ FSATI(X,Y ) then I ⊢ X ′→ U or X ′→ X

and I ⊢ U→ Z or U→ X, by Lemma 5.3.

(a) If I ⊢ X ′→ U and I ⊢ U→ Z then I ⊢ X ′→ Z by transitivity,

hence also XX ′→ Z, written as X→ Y ⊃− XX ′→ Z by I0.

(b) If I ⊢ X ′→ X then I ⊢ X→ Y ⊃− XX ′→ U by induction.

– If also I ⊢ U→ Z then I ⊢ X→ Y ⊃− XX ′→ Z by I0, I2

and I3.

– If on the other hand I ⊢ U→ X then I ⊢ X→ Y ⊃− XU→
Z by induction, and then I ⊢ X → Y ⊃− XX ′ → Z by I2

and I4 on X→ Y ⊃− XX ′→ U and X→ Y ⊃− XU→ Z.

Using these two lemmas the link between the implication problem for ifd’s

and the set FSATI(X,Y ) can be easily established:

Theorem 5.4 Let X ⊆ X ′. I |= X → Y ⊃− X ′ → Z iff X ′ → Z ∈
FSATI(X,Y ).

Proof Let I = {Xi→ Yi ⊃− X ′
i→ Zi | i = 1 . . . n}.

If I |= X → Y ⊃− X ′ → Z then (by the proof of Lemma 5.1) X ′ → Z ∈
FSATI(X,Y ). Since X ⊆ X ′, X ′ → X is trivial, hence by Lemma 5.4

I ⊢ X→ Y ⊃− X ′→ Z. I ⊢ X→ Y ⊃− X ′→ Z implies I |= X→ Y ⊃−
X ′→ Z since I0 . . . I5 are sound.

From the above proof we immediately deduce:

Corollary 5.1 I0 . . . I5 are complete for ifd’s.
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Theorem 5.4 shows that the implication problem for ifd’s behaves like that

of cfd’s. This means that one can regard an ifd as an ad-hoc implication

between two fd’s. The construction of FSATI(X,Y ) indeed consists of

generating the “closure” of a set of fd’s, using the normal inference rules

(in part 3) and some “additional” rules (the ifd’s in part 2). However, this

“nice” property seems not to hold any longer if the conditionX ⊆ X ′ in the

definition of X→ Y ⊃− X ′→ Z is dropped. In the following two chapters

we shall show more general constraints than the ifd’s, but even these

constraints do not allow arbitrary sets of attributes in X→ Y ⊃− X ′→ Z.

From Theorem 5.4 one can deduce a membership algorithm which veri-

fies whether X ′ → Z is in FSATI(X,Y ), in O(n3r2) time, where n = ♯I
and r = ♯Ω. The algorithm is omitted because it is very similar to Algo-

rithm 4.2, the membership algorithm for cfd’s.

We now present a set of inference rules for mixed ifd’s and ad’s:

(IA1) : if X→ Y , X→ Z ⊃− X ′→ T and X ′ ̸̸→ T then Y ̸̸→ Z.

(IA2) : if X ⊆ X ′ and X ̸̸→ Y then X→ Y ⊃− X ′→ Z for all Z ⊆ Ω.

Lemma 5.5 The rules IA1 and IA2 are sound.

Proof We only prove IA1. IA2 is rather trivial.

Consider an arbitrary Y -complete, Y -unique set s of tuples (in an in-

stance), satisfying X→ Y , X→ Z ⊃− X ′→ T and X ′ → T ). Because of

X→ Y s is also X-complete, and because of X ⊆ X ′ (hence X ′ → X) s

is also X ′-complete. Since X ′ ̸̸→ T holds in this X-complete set of tuples,

X ̸̸→ Z must hold too (otherwise X→ Z ⊃− X ′→ T would be violated).

Hence in s there are several Z-values, for the only Y -value, which means

that Y ̸̸→ Z holds in s.

Since cfd’s are special ifd’s we should be able to prove the rules for

cfd’s and ad’s (CA1 and CA2) using I0, . . . , I5, IA1 and IA2. (Otherwise

I0, . . . , I5, IA1 and IA2 cannot be complete for ifd’s and ad’s.)

Remark 5.2 Rules IA1 and IA2 imply CA1 and CA2.

Proof Since CA1 is a special case of IA1, with X = X ′ and CA2 is a

special case of IA2, with X = X ′, this is trivial.

Note that rules I0, . . . , I4 and CA1 are complete for fd’s and ad’s only.
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Theorem 5.5 Let I ∪ A be not in conflict, X,Y ⊆ Ω. Then I ∪ A |=
X ̸̸→ Y iff I ∪A ∪ {X→ Y } is in conflict.

Proof The only-if part is trivial.

For the if-part, suppose that I ∪ A ∪ {X → Y } is in conflict. Then by

Theorem 5.2 I ∪ {X → Y } |= {T → U} for some T ̸̸→ U ∈ A. We prove

that I ∪ {T ̸̸→ U} |= X ̸̸→ Y . (We actually prove ⊢ because we use our

inference rules.) We give a new and shorter proof than that in [13].

I∪{X→ Y } |= T→ U implies T → U ∈ FSATI(X,Y ) by Lemma 5.1. By

Lemma 5.3 I |= T → X, (since I ̸|= T → U unless I ∪A was in conflict),

hence by Lemma 5.4 I |= X→ Y ⊃− XT → U .

• T ̸̸→ U , T → U ⊃− T → U and T → XT induce XT ̸̸→ U by IA1.

• XT ̸̸→ U and X→ Y ⊃− XT → U induce X ̸̸→ Y by IA1.

This shows that I ∪ {T ̸̸→ U} |= X ̸̸→ Y .

The proof of the above theorem immediately implies that:

Corollary 5.2 The rules I0, . . . , I5 and IA1 are complete for the infer-

ence of ad’s from a set of ifd’s and ad’s.

Corollary 5.3 The rules I0, . . . , I5 and IA1 are complete for the infer-

ence of ad’s from a set of cfd’s and ad’s.

Using Theorem 5.2 and 5.5 one can easily prove that Algorithm 4.3, with

C replaced by I, is correct for ifd’s and ad’s. It still takes O(n3r2m) time,

where n = ♯I, m = ♯A and r = ♯Ω.

As Theorem 5.5 is very similar to Theorem 4.6, the following theorem

solves the implication problem for ifd’s (with the influence of ad’s) as in

Theorem 4.7. The proof is omitted since it is exactly the same as for

Theorem 4.7, with C replaced by I.
Theorem 5.6 Let I ∪ A be not in conflict. Then I ∪ A |= X → Y ⊃−
X ′→ Z (with X ⊆ X ′) iff I |= X→ Y ⊃− X ′→ Z or I ∪A |= X ̸̸→ Y .

An immediate consequence of the above theorem is:

Corollary 5.4 The rules I0, . . . , I5, IA1 and IA2 are complete for the

inference of ifd’s from a set of ifd’s and ad’s.
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This also means:

Corollary 5.5 The rules I0, . . . , I5, IA1 and IA2 are complete for the

inference of cfd’s from a set of ifd’s and ad’s.

Algorithm 4.3, with C replaced by I, is a membership algorithm for ifd’s

(considering the presence of ad’s), and takes O(n3r2m) time, with m = ♯I,
m = ♯A and r = ♯Ω.

Rules IA1 and IA2 are very similar to CA1 and CA2. Still, IA1 and IA2

are complete (together with I0 . . . I5) whereas CA1 and CA2 are not. The

reason is that if C ∪ {X → Y } |= T → U (and C ̸|= T → U) Lemma 5.4

shows that C |= X → Y ⊃− XT → U . This ifd cannot be expressed by

means of cfd’s.

We illustrate the completeness of I0, . . . , I5, IA1 and IA2 with Exam-

ple 4.1:

Example 5.1 Recall Example 4.1. C = {AB → C ⊃− AB → E , A→
D ⊃− A→ F} and A = {AB ̸̸→ EF}. We show that C ∪ {AB ̸̸→ EF}
⊢ A ̸̸→ CD, using the rules for ifd’s and ad’s.

A→ CD ⊃− AB→ C is trivial. With AB→ C ⊃− AB→ E it induces

A→ CD ⊃− AB→ E by I4.

A → CD ⊃− A → D is trivial. With A → D ⊃− A → F it induces

A → CD ⊃− A → F by I4. With the trivial A → F ⊃− AB → F it

induces A→ CD ⊃− AB→ F by I4.

From A → CD ⊃− AB → E and A→ CD ⊃− AB → F we infer A →
CD ⊃− AB → EF by I2′. Rule IA1 then generates A ̸̸→ CD from

AB ̸̸→ EF .

The problem for cfd’s is that the constraint A → CD ⊃− AB → EF ,

which is a consequence of C, cannot be expressed by means of cfd’s. This

indicates that it is unlikely that a complete set of inference rules for cfd’s

and ad’s would exist (which only uses cfd’s and ad’s).
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5.3 The Inheritance of ifd’s and ad’s.

The membership problem must be solved in order to be able to decide

whether a decomposition according to an ifd is trivial or not (i. e. whether

for X → Y ⊃− X ′ → Z X → Y or X ̸̸→ Y holds). When decomposing

the subschemes further on (using other ifd’s) one must know which de-

pendencies already hold in these subschemes. This inheritance problem is

rather similar to the inheritance problem for cfd’s and ad’s. Where pos-

sible, references are made to Section 4.3 instead of repeating very similar

proofs.

Notation 5.1 In the sequel we treat the horizontal decomposition of a

scheme R = (Ω, I ∪ A), according to X → Y ⊃− X ′ → Z ∈ I, into

the schemes R1 = σX→Y (R) = (Ω, I1 ∪ A1), and R2 = σX ̸̸→Y (R) =

(Ω, I2∪A2). We assume that I ∪A is not in conflict, I ∪A ̸|= X→ Y and

I ∪A ̸|= X ̸̸→ Y . We again do not consider complete sets of dependencies.

The sets of dependencies we shall generate for the subschemes are only

generating for the set of all dependencies, holding in the subschemes.

Since fd’s cannot be violated by taking a selection of a relation, Remark 4.3

also applies if the decompositions are based on ifd’s instead of cfd’s.

For ifd’s and ad’s similar inclusions than in Lemma 4.6 hold, and they can

be proved similarly:

Lemma 5.6 Using Notation 5.1 we have:

• I1 ⊆ {T → U ⊃− T ′→ V | I ∪A ∪ {X→ Y } |= T → U ⊃− T ′→ V }.
• I2 ⊆ {T → U ⊃− T ′→ V | I ∪A ∪ {X ̸̸→ Y } |= T → U ⊃− T ′→ V }.
• A1 ⊆ {T ̸̸→ U | I ∪A ∪ {X→ Y } |= T ̸̸→ U}.
• A2 ⊆ {T ̸̸→ U | I ∪A ∪ {X ̸̸→ Y } |= T ̸̸→ U}.

Some dependencies that are inherited by both R1 and R2 are given by the

following lemma, which can be proved exactly as Lemma 4.7:

Lemma 5.7 Using Notation 5.1, an ad holds in both R1 and R2 if I∪A |=
T ̸̸→ U and I |= T → X. An ifd T → U ⊃− T ′→ V holds in both R1 and

R2 if I ∪A |= T→ U ⊃− T ′→ V and I |= T → U or I |= T → X.
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Notation 5.2 We denote the set of the ad’s of A that are inherited be-

cause of Lemma 5.7, by Â. The set of the ifd’s of I that are inherited

because of Lemma 5.7, or that are trivial, is denoted by Î. We include the

trivial ifd’s because they represent the goals of Chapters 2 and 3. They

are of no importance for the inheritance problem, and are neglected in the

sequel.

The proof of the inheritance of ifd’s and ad’s relies on the construction of

a special instance with the following property:

Lemma 5.8 Consider a set I ∪ A, not being in conflict. Let s be an

instance in which I ∪A holds.

If I ∪A ∪ {P ̸̸→ Q} is not in conflict, then there exists an instance r, in

which I ∪A still holds, which contains s as a subset, and in which the ad

P ̸̸→ Q holds (and hence also every ifd P → Q ⊃− P ′→ O where P ⊆ P ′).

Proof This lemma can be proved using the construction of Lemma 4.8.

The only additional fact we have to prove is that in r = s ∪ s′ (s′ =

Arm(FSATI(Ø,Ø ))), I still holds.

Let T → U ⊃− T ′ → V ∈ I. If T ̸⊂ P and I |= T → U then T → U

and T ′→ V still hold in r since s and s′ both satisfy T → U and T ′→ V

and since s and s′ have no common T -value (and hence also no common

T ′ value). If T ⊆ P and I |= T → U then U ⊆ P too. s and s′ have a

common P -value, so T → U still holds in r (since the common T -value

has the same U -value in s and s′, since it is part of the common P -value).

If T ′ ⊆ P then also V ⊆ P , hence T ′→ V holds in r for the same reason

as for T → U . If T ′ ̸⊂ P then T ′ → V holds in r since s and s′ have no

common T ′–value.

If for T → U ⊃− T ′→ V ∈ I, I ∪A |= T ̸̸→ U , then T ̸̸→ U holds in r since

it holds in both s and s′, and hence T → U ⊃− T ′→ V holds by IA2.

As in Lemma 4.9 we can repeat the construction of Lemma 5.8 to obtain:

Lemma 5.9 Let I ∪A be not in conflict. Let s be an instance in which

Î ∪ Â holds. Then there exists an instance r, containing s as a subset,

and in which I ∪A holds.
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The solution of the inheritance problem is proved in a very similar way as

Theorem 4.8:

Theorem 5.7 Using Notation 5.1 and 5.2, an ifd or ad must hold in R1

(resp. R2) iff it is a consequence of Î ∪ Â ∪ {X → Y } (resp. Î ∪ Â∪
{X ̸̸→ Y }).
Proof From Lemma 5.6 and 5.7 it follows that (Î ∪ Â ∪ {X→ Y })∗ ⊆
(I1∪A1)

∗ ⊆ (I ∪A∪{X→ Y })∗ and (Î ∪ Â∪{X ̸̸→ Y })∗ ⊆ (I2∪A2)
∗ ⊆

(I ∪A ∪ {X ̸̸→ Y })∗.

The proof has to cover 4 cases: an ifd and an ad, in R1 and in R2. We

only prove the case for an ad in R1. The other cases are similar and also

similar to the proof of Theorem 4.8.

Consider an ad T ̸̸→ U ∈ (I ∪A∪ {X→ Y })∗ − (Î ∪ Â∪ {X→ Y })∗. We

prove that T ̸̸→ U ̸∈ (I1 ∪A1)
∗.

Since T ̸̸→ U ̸∈ (Î ∪ Â ∪ {X → Y })∗, Î ∪ Â ∪ {X → Y } ∪ {T → U} is

not in conflict, by Theorem 5.5. Hence there exists an instance s in which

Î ∪ Â ∪ {X → Y } ∪ {T → U} holds. By the construction of Lemma 5.9

an instance r can be build which contains s and in which I ∪ A holds.

In this construction (explained in the proof of Lemma 4.8) a number of

modified copies of Arm(FSATI(Ø,Ø )) are added to s. Since X ̸̸→ Y holds

in Arm(FSATI(Ø,Ø )), and since I ̸|= T → X (by the definition of Â),

r1 = σX→Y (r) = s. Hence in r1, T ̸̸→ U does not hold, which means that

T ̸̸→ U ̸∈ (I1 ∪A1)
∗.

From Theorem 5.7 one can easily deduce an algorithm which calculates

generating sets for the inherited dependencies, in O(n4r2+n3m2r2) time,

where n = ♯I, m = ♯A and r = ♯Ω. (This is n times the complexity of

an ifd-membership test plus m times the complexity of an ad-membership

test).

Algorithm 5.2 A Horizontal Decomposition Step with ifd’s and ad’s

Input: R = (Ω, I ∪ A) and an ifd X → Y ⊃− X ′ → Z ∈ I. I ∪ A is

assumed not to be in conflict, I ∪A ̸|= X→ Y and I ∪A ̸|= X ̸̸→ Y .

Output: An ordered pair of schemes (R1 = (Ω, I1 ∪ A1), R2 = (Ω, I2 ∪
A2)), being the decomposition of R according to X→ Y ⊃− X ′→ Z.

Method:
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var Î, Î1, Î2 : set of ifd’s := Ø

Â : set of ad’s := Ø

begin

for each T→ U ⊃− T ′→ V ∈ I do

if I |= T → U or I |= T → X or Z −X ′ ⊆ Y −X

then

Î := Î ∪ {T → U ⊃− T ′→ V }
od

for each T ̸̸→ U ∈ A do

if I |= T → X

then

Â := Â ∪ {T ̸̸→ U}
od

for each T→ U ⊃− T ′→ V ∈ Î do

if Î ∪ {X→ Y } ∪ {X ′→ Z} ̸|= T → U and

Î ∪ {X→ Y } ∪ {X ′→ Z} ∪ Â ̸|= T ̸̸→ U

then

Î1 := Î1 ∪ {T → U ⊃− T ′→ V }
od

for each T→ U ⊃− T ′→ V ∈ Î do

if Î ̸|= T → U and Î ∪ Â ∪ {X ̸̸→ Y } ̸|= T ̸̸→ U

then

Î2 := Î2 ∪ {T → U ⊃− T ′→ V }
od

return(R1 = (Ω, Î1 ∪ {X→ Y } ∪ {X ′→ Z} ∪ Â),

R2 = (Ω, Î2 ∪ Â ∪ {X ̸̸→ Y }))
end

This algorithm again treats the trivial ifd’s in such a way that the decom-

position that is generated in case of all trivial ifd’s is equivalent to the

inherited decomposition into HNF.
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5.4 The “Imposed” Normal Form

In this section we illustrate an algorithm for horizontal decomposition

of a relation scheme, according to its ifd’s. The algorithm decomposes

the scheme (and subschemes) until no subscheme can be decomposed any

further. This is formalized by defining a normal form:

Definition 5.6 A scheme R = (Ω, I ∪A) is said to be in Imposed Normal

Form (INF) iff for all X → Y ⊃− X ′ → Z ∈ I either I |= X → Y or

I ∪A |= X ̸̸→ Y .

A decomposition (R1, . . . , Rn) is in INF iff all the Ri, i = 1 . . . n, are in

INF.

In Algorithm 5.2 we have defined that the trivial ifd’s are inherited in the

same way as in the inherited decomposition steps of Section 3.3. Hence the

horizontal decomposition into Imposed Normal Form is equivalent to the

inherited decomposition into Horizontal Normal Form if only trivial ifd’s

are given. Furthermore, if only cfd’s are given, the decomposition into INF

is equivalent to the decomposition into CNF , described in Section 4.4.

From this definition the construction of a decomposition algorithm, which

decomposes a relation scheme according to an ifd, and then decomposes

the subschemes further on, until all subschemes are in INF, is straightfor-

ward.

To illustrate the horizontal decomposition into INF, we modify Exam-

ple 2.1:

Example 5.2 Recall Example 2.1. In Section 5.1 we showed that the rela-

tion scheme STAFF is likely to satisfy emp→ job ⊃− emp man dep div→
sal. In Section 4.1 we suggested the cfd emp → job man dep div ⊃−
emp→ sal. To be consistent with Example 4.2 we also consider the goal

man→? div, which is represented by the ifd man→ div ⊃− man→ div.

The goal emp→? job is no longer needed, since it already is represented

by our ifd emp→ job ⊃− emp man dep div → sal. Figure 5.1 shows a

decomposition tree for the decomposition of STAFF into INF. The sets

of ifd’s and ad’s we give are not exactly as generated by Algorithm 5.2, to

keep the figure smaller.
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Recall Table 4.1. The reader is invited to verify that this table satisfies the

given ifd’s for STAFF . After decomposing staff according to Figure 5.1

the subinstances that are obtained correspond to the subinstances of Ex-

ample 4.2. The main reason that we obtain the same subinstances is that

staff satisfies the fd emp job man dep div→ sal, which is not given. This

implies that in staff12, the fd emp man dep div→ sal accidently holds, in

Figure 4.1.
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STAFF
emp→ job ⊃− emp man dep div→ sal
emp→ job man dep div ⊃− emp→ sal

man→ div ⊃− man→ div

❄✓
✒

✏
✑emp→ job ⊃− emp man dep div→ sal

✟✟✟✟✙
❍❍❍❍❥

STAFF1
emp→ job

emp man dep div→ sal
emp→ job man dep div ⊃− emp→ sal

man→ div ⊃− man→ div

STAFF2
emp ̸̸→ job

man→ div ⊃− man→ div

❄✓
✒

✏
✑man→ div ⊃− man→ div

0
0✠

❅
❅❘

STAFF21
man→ div

STAFF22
man ̸̸→ div

❄✓
✒

✏
✑emp→ job man dep div ⊃− emp→ sal

✁
✁

✁✁☛

❆
❆
❆❆❯

STAFF11
emp→ Ω

man→ div ⊃− man→ div

STAFF12
emp→ job

emp man dep div→ sal
emp ̸̸→ job man dep div
man→ div ⊃− man→ div❄✓

✒
✏
✑man→ div ⊃− man→ div

0
0✠

❅
❅❘

STAFF111
emp→ Ω
man→ div

STAFF112
emp→ Ω
man ̸̸→ div

❄✓
✒

✏
✑man→ div ⊃− man→ div

✁
✁
✁✁☛

❆
❆
❆❆❯

STAFF121
emp→ job

emp man dep div→ sal
man→ div

STAFF12
emp→ job

emp man dep div→ sal
man ̸̸→ div

Figure 5.1: A decomposition tree for STAFF , into INF.



106 5. Decomposition with ifd’s



Chapter 6

Decomposition with fdi’s

The horizontal decomposition according to ifd’s is capable of representing

the decomposition with goals, and with cfd’s, and has nicer properties

than these previous approaches: the decomposition is based on constraints

(unlike the goals) and for these constraints we have a sound and complete

axiom system (unlike for cfd’s and ad’s). However, they may fail to be able

to express the constraints that could lead to horizontal decompositions,

because in the ifd X → Y ⊃− X ′ → Z the sets of tuples in which the fd

X → Y must hold are the X-unique X-complete sets of tuples, for the

same X. This is not at all obvious, especially not with the ifd’s in which

the second (or implied) fd has a different left hand side: X ′. Also the

reason why X ⊆ X ′ or X ′ → X must hold is not very clear (except the

technical reason).

This chapter covers [15]. In this chapter we remove the restriction that

X → Y must hold in X-unique X-complete sets of tuples, to allow a

distinction between the fd we want and the kind of sets we want it to be

satisfied in.

6.1 Functional Dependency Implications

Let us first recall Example 2.1. The cfd emp → job man dep div ⊃−
emp → sal and the ifd emp → job ⊃− emp man dep div → sal may

generate useful decompositions, but they do not reflect the structure of

the company, represented by the relation STAFF . The company is divided

into several divisions, each having a number of departments, each having a

107
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number of employees. The major structural element in this database is the

division. So for both semantic reasons (keeping tuples of the same division

together) as for technical reasons (keeping tuples of the same division in

the same relation easies the distribution among different computers, such

that the computer of each division contains the tuples of that division).

Some constraints about divisions are:

• If in a division every employee works for only one department and

manager, at only one job, then he has only one salary (for that

division).

• If in a division every department treats only one job, then (this division

is so large that) every employee has only one job, salary and manager

for this division.

• If in a division every department treats only one job, then everymanager

has only one department (for that division).

We shall not discuss the choice of these constraints. Others can equally

likely be satisfied, in other companies.

We now show how to express this constraint formally, and how it leads to

a horizontal decomposition.

Definition 6.1 Let R be a relation scheme, X,Y, Z, T, U ⊆ Ω, such that

Z ⊆ X and Z ⊆ T .

• A relation instance r of R satisfies the functional dependency implica-

tion (fdi) X→ Y
Z⊃− T→ U , iff in every Z-complete set of tuples in r,

in which the fd X→ Y holds, the fd T → U must hold too.

• The scheme R satisfies X → Y
Z⊃− T → U iff all the instances of R

satisfy X→ Y
Z⊃− T→ U .

The ifd’s of Chapter 5 are fdi’s with Z = X. The cfd’s of Chapter 4 have

Z = X = T . Fd’s can be expressed as fdi’s in many different ways. E. g.

T → T
T⊃− T → U (a cfd), Ø→ Ø

Ø⊃− T → U (an ifd) and T → Ø
Ø⊃−

T→ U (a “true” fdi) all represent the fd T → U . The goals of Chapters 2

and 3 can be expressed as trivial fdi’s, e. g. T → U
T⊃− T → T .

The fdi’s of the STAFF example are (in the order in which they were

given):
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• emp div→ job man dep
div⊃− emp div→ sal

• dep div→ job
div⊃− emp div→ job sal man

• dep div→ job
div⊃− man div→ dep

One immediately notices that repeating div three times in the fdi is a bit

redundant, and one may ask whether the conditions Z ⊆ X and Z ⊆ T in

Definition 6.1 are necessary. A first remark is that weakening the condi-

tions to X→ Z and T → Z, to obtain generalized functional dependency

implications does not generate a more powerful class of dependencies (as

indicated in the previous chapter, with the introduction of generalized

imposed-functional dependencies). However, the following generalization

is possible:

Definition 6.2 Let R be a relation scheme, X,Y, Z, T, U ⊆ Ω.

• A relation instance r of R satisfies the unrestricted functional depen-

dency implication (ufdi) X → Y
Z⊃− T → U iff in every Z-unique

Z-complete set of tuples in r, in which the fd X → Y holds, the fd

T → U must hold too.

• The scheme R satisfies X → Y
Z⊃− T → U iff all the instances of R

satisfy X→ Y
Z⊃− T→ U .

This definition considers Z-unique Z-complete sets of tuples, for seman-

tic reasons: the attribute Z is supposed to be the major element in the

database, like the division in the STAFF example. We do not want the fd

X→ Y for one Z-value to interfere with X→ Y for another Z-value, or, in

our example, we do not want a constraint on employees of one division to

interfere with that constraint on employees of another division. However,

the additional condition that we consider Z-unique sets of tuples causes

the ufdi’s not to be more powerful than the fdi’s:

Remark 6.1 The ufdi X→ Y
Z⊃− T → U is equivalent to the fdi XZ→

Y
Z⊃− TZ→ U .

Proof Let X → Y
Z⊃− T → U hold in r. Consider a Z-complete set

of tuples s ⊆ r. If XZ → Y holds in s, then XZ → Y holds in every

Z-unique subset of s, hence also X→ Y holds in every Z-unique subset of

s (since they each have only one Z-value). Hence T → U must hold in each
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Z-unique subset of s. This implies that TZ→ U must hold in s (since no

two Z-unique Z-complete sets of tuples can have the same TZ-value).

Let XZ → Y
Z⊃− TZ → U hold in r. Consider a Z-unique Z-complete

set of tuples s ⊆ r. If XZ→ Y holds in s, then so does X→ Y (since s

has only one Z-value) and so does TZ→ U because of the fdi. Hence also

T→ U holds in s (since s has only one Z-value).

The ufdi’s corresponding to the fdi’s of the STAFF example look much

nicer:

• emp→ job man dep
div⊃− emp→ sal

• dep→ job
div⊃− emp→ job sal man

• dep→ job
div⊃− man→ dep

The reason why we build our decomposition around fdi’s instead of ufdi’s

(although the latter look nicer, and are possibly easier to understand), is

that using Z-complete sets of tuples is what we have done in the previous

chapters. Hence several lemmas and theorems can have very similar proofs

(of which some can be easily omitted). If we use ufdi’s all theorems would

certainly have to be proved explicitly, for clarity.

Definition 6.3 Let R = (Ω,∆, dom,M,SC) be a relation scheme, let

X,Y, Z ⊆ Ω, such that Z ⊆ X.

• For every instance r of R, the selection for X Z→ Y of r, σ
X

Z→Y
(r), is

the largest Z-complete subset (of tuples) of r in which X→ Y holds.

• The selection for X Z→ Y of R, σ
X

Z→Y
(R), is a schemeR1 = (Ω,∆, dom,

M1, SC1). The calculation of SC1 will be described in Section 6.3. SC1

contains X→ Y of course. M1 explains that all instances of R1 must

be the selection for X Z→ Y of the instances of R.

We require Z ⊆ X to make sure that X-values of r are not split up by

taking the selection for X Z→ Y of r.

Definition 6.4 The horizontal decomposition of a scheme R, according

to the fdi X → Y
Z⊃− T → U , is the ordered pair (R1, R2), where R1 =

σ
X

Z→Y
(R) and R2 = R−R1.
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Note that the horizontal decomposition of a scheme, according to X →
Y

Z⊃− T → U does not depend on T or U , but it induces the fd T → U in

R1. In R2, which contains the exceptions, the fd X → Y is violated for

every Z-value. This is formalized by means of the following constraint:

Definition 6.5 Let R be a relation scheme, X,Y, Z ⊆ Ω and Z ⊆ X.

• A relation instance r of R satisfies the anti-functional dependency (afd)

X ̸̸−Z→ Y iff every nonempty Z-complete set of tuples of r, the func-

tional dependency X→ Y does not hold.

• The scheme R satisfies X ̸̸−Z→ Y iff all the instances of R satisfy X ̸̸−Z→
Y .

Definition 6.6 Let R = (Ω,∆, dom,M,SC) be a relation scheme. Let r

be an instance of R.

• The selection for X ̸̸−Z→ Y of r, σ
X ̸̸−Z→Y

(r), is the largest Z-complete

set of tuples of r in which X ̸̸−Z→ Y holds.

• The selection for X ̸̸−Z→ Y of R, σ
X ̸̸−Z→Y

(R) is the scheme R2 = (Ω,∆,

dom,M2, SC2). The calculation of SC2 will be described in Section 6.3.

M2 explains that all instances of R2 must be the selection for X ̸̸−Z→ Y

of the instances of R.

One can easily see that R−σ
X

Z→Y
(R) = σ

X ̸̸−Z→Y
(R), hence the horizontal

decomposition of R according toX→ Y Z→ T → U is the couple of schemes

(σ
X

Z→Y
(R),σ

X ̸̸−Z→Y
(R)).

The afunctional dependencies used in the previous chapters, are afd’s with

X = Z.

From now on we shall assume that the set of constraints SC of a relation

scheme R consists of a set I of fdi’s and a set A of afd’s. (Note that I
contains the fd’s, cfd’s and ifd’s, and that A contains the ad’s).

As for fd’s, cfd’s and ifd’s, we start the decomposition theory with the

proof of the existence of strong Armstrong relations for fd’s, considering

the presence of fdi’s:
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Definition 6.7 Let I be a set of fdi’s over a set Ω of attributes. A strong

Armstrong relation for I is a strong Armstrong relation for the set of all

fd’s that are a consequence of I.

The proof of the construction of (strong) Armstrong relations for I again

relies on the following special set of fd’s:

Definition 6.8 FSATI(X,Y ) is the smallest possible set of fd’s, such

that:

1. X→ Y ∈ FSATI(X,Y ).

2. If Xi → Yi ∈ FSATI(X,Y ) and Xi → Yi
Zi⊃− Ti → Ui ∈ I then

Ti→ Ui ∈ FSATI(X,Y ).

3. If FSATI(X,Y ) |= T → U then T → U ∈ FSATI(X,Y ).

FSATI(X,Y ) can be constructed starting from {X→ Y } and by repeat-

edly trying to satisfy 2 and 3 of the definition.

Lemma 6.1 Let I be a set of fdi’s over Ω, T,U,X, Y ⊆ Ω. FSATI(X,Y ) =

{P→ Q | I ∪ {X→ Y } |= P→ Q}.

Proof For X→ Y it is obvious that I ∪ {X→ Y } |= X→ Y . For other

fd’s we prove the lemma by induction.

• Suppose T → V is added by trying to satisfy part 2 of the definition.

Then (by induction) there is an fdi P → Q
U⊃− T → V ∈ I for which

I ∪ {X → Y } |= P → Q. Obviously P → Q and P → Q
U⊃− T → V

imply T → V .

• Suppose T → V is added by trying to satisfy part 3 of the definition.

Then it is a consequence of a number of fd’s for which the lemma

already holds (by induction hypothesis). Hence T → V also is a con-

sequence of I ∪ {X→ Y }.

This proves that all the fd’s of FSATI(X,Y ) are consequences of I ∪
{X→ Y }. To prove the opposite inclusion, consider Arm(FSATI(X,Y )).

In Arm(FSATI(X,Y )), all the fd’s of FSATI(X,Y ) hold, and (since by

part 3 of the definition FSATI(X,Y )∗ = FSATI(X,Y )) no other fd’s

hold. Suppose some fdi Xi → Yi
Zi⊃− Ti → Ui of I does not hold in

Arm(FSATI(X,Y )). Then there exists a Zi-complete set of tuples in
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Arm(FSATI(X,Y )) in which Xi → Yi holds and in which Ti → Ui does

not hold. By Theorem 2.1 this means that FSATI(X,Y ) |= Xi→ Yi, and

hence Xi→ Yi ∈ FSATI(X,Y ) (by part 4 of the definition). By part 2 of

the definition this implies that Ti→ Ui ∈ FSATI(X,Y ) and hence Ti→ Ui

must hold in Arm(FSATI(X,Y )), a contradiction.

From Theorem 2.1 and the above lemma one can easily deduce that

Theorem 6.1 Let I be a set of fdi’s. Arm(FSATI(Ø,Ø )) is a strong

Armstrong relation for I. In other words, for all T,U ⊆ Ω holds that

I |= T→ U iff T → U ∈ FSATI(Ø,Ø ).

From this theorem we learn that the set Z in X → Y
Z⊃− T → U has no

importance for the implication problem for fd’s. Hence fdi’s can represent

arbitrary implications between fd’s (in the whole relation), by letting Z =

Ø. The cfd’s and ifd’s could not express these implications. This suggests

that the fdi’s are the largest class of constraints for studying “partial”

implications between fd’s.

With the Armstrong relation for I, we can prove the following theorem

for detecting conflict, in exactly the same way as for cfd’s:

Theorem 6.2 I ∪ A is in conflict iff for some afd X ̸̸−Z→ Y of A, I |=
X→ Y holds.

This Theorem shows that the set Z also is not important for the conflict

detection.

Algorithm 6.1 Conflict Detection

Input: I,A, a set of fdi’s and a set of afd’s.

Output: true or false.

Method:

for each T ̸̸−Z→ U in A do

if I |= T → U

then

return(true) { and exit }
od

return(false) { only reached if for-loop is done }
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In the above algorithm we did not explain how to verify whether I |=
T → U . This means verifying whether T → U ∈ FSATI(Ø,Ø ), which

can be done by an algorithm, very similar to Algorithm 4.2. The time-

complexity of that algorithm is O(n3r2) where n = ♯I and r = ♯Ω. The

time complexity of Algorithm 6.1 then becomes O(n3r2m) where m = ♯A.

6.2 The Implication Problem for fdi’s and afd’s

As in the previous chapters, we solve the implication problem for fdi’s

and afd’s by means of the tools FSAT , the Armstrong relation, and a set

of inference rules. However we need an additional tool: a construction

similar to that of Lemma 4.8. We solve the implication problem for fdi’s

(only) first. For fdi’s we have the following inference rules:

(FI0) : if Z ⊆ X, Z ⊆ T , Y ⊆ X, Z ′ ⊆ X ′, Z ′ ⊆ T , Y ′ ⊆ X ′, and

X→ Y
Z⊃− T → U then X ′→ Y ′ Z⊃− T → U .

(FI1) : if Z ⊆ X and Z ⊆ T and either U ⊆ T or (both) X ⊆ T and

U − T ⊆ Y −X then X→ Y
Z⊃− T→ U .

(FI2) : if X→ Y
Z⊃− T→ U and W ⊆ V then X→ Y

Z⊃− TV → UW .

(FI3) : if X → Y
Z⊃− T → U and X → Y

Z⊃− U → V then X → Y
Z⊃−

T → V .

(FI4) : if X → Y
Z⊃− T → U and T → U

Z⊃− V → W then X → Y
Z⊃−

V → W .

(FI5) : if X→ Y
Z⊃− T→ U and Z→ Z ′ then XZ ′→ Y

Z ′
⊃− TZ ′→ U .

As fd’s are special fdi’s the use of fd’s in these rules is allowed. In fact

FI0 shows how to represent fd’s as fdi’s (in some equivalent ways). The

classical inference rules for fd’s and the inference rules for cfd’s and ifd’s

can be deduced from FI0, . . . , FI5 as follows:

Lemma 6.2 The rules FI0, . . . , FI5 are complete for ifd’s (and hence

also for cfd’s and fd’s).

Proof To prove this completeness we show how to prove I0, . . . , I5 using

FI0, . . . , FI5. For I0, . . . , I4 this is trivial since these rules are special cases

of FI0, . . . , FI5. The only nontrivial rule is I5: Let X → Y
X⊃− X ′ → Z
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and X → X ′′. Rule FI5 induces XX ′′ → Y
X ′′
⊃− X ′X ′′ → Z. Rule FI1

induces X ′′ → Y
X ′′
⊃− XX ′′ → Y . Rule FI4 then generates X ′′ → U

X ′′
⊃−

X ′X ′′→ Z.

Theorem 6.3 The rules FI0 . . . FI5, are sound.

Proof This is very straightforward, and left to the reader. The proof

of Theorem 4.3 shows the arguments that can be applied to the rules for

fdi’s as well.

Lemma 6.1 does not describe the implication problem for fd’s completely

(considering the presence of fdi’s). The sets Zi in the fdi’s Xi → Yi
Zi⊃−

Ti → Ui are of no importance in the construction of FSATI(X,Y ), al-

though they have some influence on the implication problem for fdi’s. The

following lemma shows the influence of the Zi on the implication problem

for fd’s:

Lemma 6.3 Let IZ = {Xi → Yi
Zi⊃− Ti → Ui ∈ I | I |= Xi → Yi or

I |= Zi→ Z}. Let P,Q ⊆ Ω. Then I |= P→ Q iff IZ |= P → Q (for every

Z ⊆ Ω).

Proof In the construction of FSATI(Ø,Ø ) only those Xi → Yi
Zi⊃−

Ti → Ui ∈ I are used for which I |= Xi → Yi. Hence FSATI(Ø,Ø ) =

FSATIZ (Ø,Ø ) for every set Z ⊆ Ω. The lemma then follows directly from

Lemma 6.1.

The following lemma is similar to Lemmas 4.3 and 5.3.

Lemma 6.4 Let Z ⊆ X, let IZ be as in Lemma 6.3. If P → Q ∈
FSATIZ (X,Y ) then I |= P → Q or I |= P → Z.

Proof We prove that the property remains valid throughout the con-

struction of FSATIZ(X,Y ).

• If P→ Q = X→ Y then P→ Z is trivial.

• If P→ Q is added in part 2 of Definition 6.8 then P = Ti and Q = Ui

for some Xi→ Yi
Zi⊃− Ti→ Ui ∈ IZ . There are two possibilities (by the

definition of IZ): I |= Xi→ Yi or I |= Zi→ Z.

– If I |= Xi→ Yi then I |= Ti→ Ui = P → Q.
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– If I |= Zi→ Z then I |= Ti→ Z = P → Z by augmentation (since

Zi ⊆ Ti).

• If P→ Q is added in part 3 then it is derived from other fd’s (already

in FSATIZ(X,Y )), by reflexivity, augmentation or transitivity.

– If Q ⊆ P then P → Q is trivial.

– If P = P ′P ′′, Q = Q′Q′′, with P ′ → Q′ already in FSATIZ (X,Y )

and Q′′ ⊆ P ′′, then P → Q or P → Z is deduced from P ′→ Q′ or
P ′→ Z by augmentation.

– If P→ O and O→ Q already are in FSATIZ (X,Y ) then P → Q or

P → Z is deduced from P → O or P→ Z and O→ Q or O→ Z by

transitivity.

The following lemma provides part of the typical solution of the implica-

tion problem, as it occurred in the previous chapters.

Lemma 6.5 Let Z ⊆ X, I |= T → Z, and let IZ be as in Lemma 6.3.

Then IZ |= X→ Y
Z⊃− TZ→ U iff T→ U ∈ FSATIZ (X,Y ).

Proof If IZ |= X→ Y
Z⊃− TZ→ U then clearly TZ→ U ∈ FSATIZ (X,Y ).

Since I |= T → Z we know IZ |= T→ Z by Lemma 6.3. Clearly T → Z and

TZ→ U induce T → U . Lemma 6.1 implies that T → U ∈ FSATIZ(X,Y ).

For the converse we prove that the property remains valid throughout the

construction of FSATIZ (X,Y ).

• If X→ Y = T → U then X→ Y
Z⊃− TZ→ U holds by rule FI1.

• If T→ U is added in part 2 of Definition 6.8 then T = Ti and U = Ui for

some Xi→ Yi
Zi⊃− Ti→ Ui ∈ IZ . There are 2 possibilities: I |= Zi→ Z

or I |= Xi→ Yi.

– If I |= Xi→ Yi then also I |= Ti→ Ui. From Lemma 6.3 we know

that IZ |= Ti → Ui. Augmentation gives IZ |= TiZ → Ui. From

X→ Y
Z⊃− X→ X (FI1) and X→ X

Z⊃− TiZ→ Ui (FI0, provided

that Z ⊆ T = Ti) we infer X → Y
Z⊃− TiZ → Ui = X → Y

Z⊃−
TZ→ U by FI4.

– If I |= Zi→ Z then I |= Xi→ Z by augmentation. By induction

we know that I |= X→ Y
Z⊃− XiZ→ Yi. Xi→ Yi

Zi⊃− Ti→ Ui and

Zi → Z induce XiZ → Yi
Z⊃− TiZ → Ui by FI5. I |= X → Y

Z⊃−
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XiZ→ Yi and XiZ→ Yi
Z⊃− TiZ→ Ui induce X→ Y

Z⊃− TiZ→ Ui

by FI4.

• If T → U is added in part 3 of Definition 6.8 then it is inferred from

other fd’s of FSATIZ (X,Y ) by reflexivity, augmentation or transitivity.

– If U ⊆ T then X→ Y
Z⊃− TZ→ U holds by FI1.

– If T → U = T ′T ′′→ U ′U ′′ with T ′→ U ′ already in FSATIZ (X,Y )

and U ′′ ⊆ T ′′, then there are two possibilities (by Lemma 6.4):

I |= T ′→ U ′ or I |= T ′→ Z.

∗ If I |= T ′ → U ′ then TZ → U follows by augmentation. X →
Y

Z⊃− X→ X (FI1) and X→ X
Z⊃− TZ→ U (FI0) then induce

X→ Y
Z⊃− TZ→ U by FI4.

∗ If I |= T ′ → Z then IZ |= X → Y
Z⊃− T ′Z → U ′ holds by

induction. X→ Y
Z⊃− TZ→ U then follows by FI2.

– If T → V and V → U already are in FSATIZ (X,Y ) then there are

four possibilities (Lemma 6.5):

∗ If I |= T → V and I |= V → Z then I |= T → U , hence

IZ |= X→ Y
Z⊃− TZ→ U is deduced as shown above.

∗ If I |= T → V and I |= V → Z then IZ |= X→ Y
Z⊃− V Z→ U

holds by induction. X → Y
Z⊃− TZ→ V is deduced as above.

FI2 yields X→ Y
Z⊃− TZ→ V Z. X→ Y

Z⊃− TZ→ U is then

deduced by FI3.

∗ If I |= T → Z and I |= V → U then IZ |= X→ Y
Z⊃− TZ→ V

by induction. FI2 yields X → Y
Z⊃− TZ → V Z. X → Y

Z⊃−
V Z→ U is deduced as above. FI3 yields X→ Y

Z⊃− TZ→ U .

∗ If I |= T → Z and I |= V → Z then IZ |= X→ Y
Z⊃− TZ→ V

and IZ |= X → Y
Z⊃− V Z → U hold by induction. Again FI2

and FI3 yield X→ Y
Z⊃− TZ→ U .

From Lemma 6.2 and the proof of Lemma 6.5 one can easily deduce:

Corollary 6.1 Let IZ be as in Lemma 6.3, let Z ⊆ X, Z ⊆ T . Then

IZ ⊢ X→ Y
Z⊃− T→ U iff T → U ∈ FSATIZ(X,Y ).
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To complete the proof of the completeness of FI0 . . . FI5 for fdi’s it remains

to show that I |= X→ Y
Z⊃− T → U iff IZ |= X→ Y

Z⊃− T → U . In the

proof we need a complicated construction of an instance, similar to that

in Lemma 4.8, which we shall be needing also in the completeness proof

for mixed fdi’s and afd’s and in the solution to the inheritance problem.

Therefor we give the construction in a somewhat more general way than

we need for the fdi’s only.

Lemma 6.6 Let I∪A be not in conflict. Let IZ be as in Lemma 6.3. Let

AZ = {Ti ̸̸−
Zi→ Ui ∈ A | I |= Zi→ Z}. Let IZ ∪AZ ̸|= X→ Y

Z⊃− T → U

(or let Iz ∪AZ ̸|= X ̸̸−Z→ Y ). Then we can construct an instance in which

I ∪A holds but in which X→ Y
Z⊃− T → U (or X ̸̸−Z→ Y ) does not hold.

Proof Let IZ ∪ AZ ̸|= X → Y
Z⊃− T → U . We shall see later that

in Arm(FSATIZ (X,Y )), AZ holds. Since also IZ ∪ {X → Y } holds

T→ U cannot hold, otherwise (by Theorem 2.1) T→ U ∈ FSATIZ (X,Y )

which implies IZ |= X → Y
Z⊃− T → U by Lemma 6.5. By The-

orem 6.1 this means that T ̸̸−T→ U holds in Arm(FSATIZ (X,Y )). In

Arm(FSATIZ (X,Y )) a number of fdi’s of I − IZ and a number of afd’s

of A−AZ may not hold.

Suppose Xi→ Yi
Zi⊃− Ti→ Ui ∈ I − IZ does not hold, hence Xi→ Yi and

Ti ̸̸−
Ti→ Ui hold in r1 = Arm(FSATIZ (X,Y )).

Consider r2 = Arm(FSATI(Ø,Ø )). In r2 I ∪ A holds. Let s = r1 ∪ r2,

after renaming one value of the domain of r2, such that ∃t1 ∈ r1, ∃t2 ∈ r2:

t1[Zi] = t2[Zi], (and such that Xi → Yi holds in the Zi-value containing

t1).

• In s, IZ still holds: suppose Xj → Yj
Zj
⊃− Tj → Uj ∈ IZ not hold.

There are two cases: I |= Xj→ Yj (and Tj→ Uj) or I |= Zj→ Z.

– If I |= Xj → Yj and Tj → Uj and if Tj → Uj no longer holds

in s then ∃t′1 ∈ r1, ∃t′2 ∈ r2: t′1[Tj] = t′2[Tj] and t′1[Uj] ̸= t′2[Uj].

t′1[Tj ] = t′2[Tj ] is only possible if Tj ⊆ Zi but then also Uj ⊆ Zi

since I |= Tj→ Uj, hence t′1[Uj] = t′2[Uj], a contradiction.

– If I |= Zj→ Z, then Tj ⊆ Zi (which must hold to violate Tj→ Uj

for the same reason as in the first case) and Zj→ Z would induce
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Z ⊆ Zi, a contradiction with Xi→ Yi
Zi⊃− Ti→ Ui ̸∈ IZ .

• In s, AZ still holds since it is impossible to violate an afd by taking a

union of two instances in which that afd holds.

• In s, every fdi of I − IZ and every afd of A − AZ which already

holds in r1 (and also in r2 of course) still holds. For the afd’s the

reason is the same as for those of AZ . For the fdi’s we have that if

Xk→ Yk
Zk⊃− Tk→ Uk ∈ I − IZ holds in r1 then Xk ̸̸−Zk→ Yk holds in r1,

and such an afd is not violated any more.

• In s, X ̸̸−Z→ Y still does not hold, since X → Y holds in r1 and since

(as explained above) r1 and r2 do not “share” a common Z- value

(otherwise Z ⊆ Zi).

• In s, T ̸̸−Z→ U may no longer hold, because it may not hold in r2. But

in the “r1-part” of s, T ̸̸−Z→ U still holds, since r1 and r2 do not share

a Z-value (and hence also no T -value).

• But in s the number of Zi-values for which Xi → Yi holds (and not

Ti→ Ui) is decreased by one, since the Zi-value containing t1 collapses

with the Zi-value of R2, containing t2, (in which Xi ̸̸−
Zi→ Yi holds), and

since R2 has no Zi-values with Xi→ Yi.

By repeating the above construction for all other Zi-values for which Xi→
Yi holds one can generate a relation in which Xi→ Yi

Zi⊃− Ti→ Ui holds

(since Xi ̸̸−
Zi→ Yi holds). By then repeating the above construction for all

fdi’s of I − IZ which do not hold in Arm(FSATIZ (X,Y )) one generates

a relation in which I holds (and X→ Y
Z⊃− T → U still does not hold).

For the afd’s of A−AZ the construction proceeds in a similar way:

If IZ∪AZ ̸|= X ̸̸−Z→ Y then we shall see later that in Arm(FSATIZ (X,Y )),

AZ holds, as well as IZ ∪{X→ Y }. The same construction as above leads

to an instance in which I ∪A holds, and in which X ̸̸−Z→ Y does not hold.

Theorem 6.4 FI0 . . . FI5 are complete for fdi’s. Furthermore, let Z ⊆
X, Z ⊆ T , then I |= X→ Y

Z⊃− T → U iff T → U ∈ FSATIZ (X,Y ).

Proof If I |= X → Y
Z⊃− T → U then by Lemma 6.6 IZ |= X →

Y
Z⊃− T → U . (The converse is trivial.) Lemma 6.5 and Corollary 6.1
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imply that T → U ∈ FSATIZ (X,Y ), IZ ⊢ X → Y
Z⊃− T → U and

IZ |= X→ Y
Z⊃− T → U are equivalent.

Before we solve the implication problem for mixed fdi’s and afd’s we first

propose a set of inference rules:

FIA1 : if Z→ V , X→ Y
Z⊃− T → U and T ̸̸−Z→ U then V ̸̸−Z→ Y .

FIA2 : if X ̸̸−Z→ Y and Z ⊆ T then X→ Y
Z⊃− T → U for all U ⊆ Ω.

FIA3 : if X ̸̸−Z→ Y and Z→ Z ′ then XZ ′ ̸̸−Z
′

→ Y .

Lemma 6.7 Rules FIA1, FIA2 and FIA3 are sound.

Proof Rule FIA1 is very similar to IA1. FIA2 is very similar too IA2.

We only prove FIA3:

Let X ̸̸−Z→ Y and Z → Z ′ hold in an instance r. Consider an arbitrary

Z ′-complete set of tuples s in r. Since Z→ Z ′, s also is Z-complete. Hence

X→ Y does not hold in s (because of X ̸̸−Z→ Y ). Since Z→ Z ′, X→ XZ ′

holds by augmentation. XZ ′→ Y cannot hold in s, since X→ XZ ′ and
XZ ′→ Y would induce X→ Y by transitivity. Since XZ ′→ Y does not

hold in this arbitrary Z ′-complete set of tuples of r, XZ ′ ̸̸−Z
′

→ Y holds in

r.

Remark 6.2 Rules FI0, . . . , FI5, FIA1 and FIA2 are complete for ifd’s

and ad’s.

Proof This is fairly trivial since IA1 and IA2 are special cases of FIA1

and FIA2 respectively.

Theorem 6.5 Let I ∪ A be not in conflict, X,Y, Z ⊆ Ω and Z ⊆ X.

I ∪A |= X ̸̸−Z→ Y iff IZ ∪AZ |= X ̸̸−Z→ Y .

Proof The if-part is trivial.

For the only-if-part, suppose IZ ∪ AZ ̸|= X ̸̸−Z→ Y . We first show that

IZ ∪AZ ∪ {X→ Y } cannot be in conflict .

Suppose IZ ∪AZ ∪ {X→ Y } is in conflict. Then in Arm(FSATIZ (X,Y ))

for some afd T ̸̸−V→ U of AZ T → U holds (since T ̸̸−V→ U does not hold).
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Hence (Theorem 6.1) IZ ∪ {X→ Y } |= T → U . Since IZ |= V → Z (hence

also IZ |= T→ Z) Lemma 6.5 yields IZ |= X→ Y
Z⊃− TZ→ U .

T ̸̸−V→ U induces TZ ̸̸−V→ U by rule FIA1 (since T → TZ by augmentation

on T → Z, and since T → U
V⊃− T → U is trivial). Rule FIA3 yields

TZ ̸̸−Z→ U , and FIA1 then induces X ̸̸−Z→ Y (from X→ Y
Z⊃− TZ→ U), a

contradiction with IZ ∪AZ ̸|= X ̸̸−Z→ Y .

So IZ ∪ AZ ∪ {X→ Y } cannot be in conflict. Hence (as we promised in

the proof of Lemma 6.6) AZ holds in Arm(FSATIZ (X,Y )). Lemma 6.6

then says that there exists an instance in which I ∪A holds and in which

X ̸̸−Z→ Y does not hold. Hence I ∪A ̸|= X ̸̸−Z→ Y .

The proof of the above theorem immediately implies that:

Corollary 6.2 The rules FI0, . . . , FI5, FIA1 and FIA3 are complete for

the inference of afd’s from a set of fdi’s and afd’s.

Using Theorem 6.2 and 6.5 one can easily prove the following membership

algorithm for afd’s (considering the presence of fdi’s):

Algorithm 6.2 Membership Detection for afd’s with fdi’s

Input: I,A, a set of fdi’s and a set of afd’s, not in conflict; X ̸̸−Z→ Y an

afd.

Output: true or false

Method:

var IZ : set of fdi’s := Ø

AZ : set of afd’s := Ø

begin

for each Xi→ Yi
Zi⊃− Ti→ Ui in I do

if I |= Xi→ Yi or I |= Zi→ Z

then

IZ := IZ ∪ {Xi→ Yi
Zi⊃− Ti→ Ui}

od

for each Xj ̸̸−
Zj→ Yj in A do

if I |= Zj→ Z
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then

AZ := AZ ∪ {Xj ̸̸−
Zj→ Yj}

od

for each Xj ̸̸−
Zj→ Yj in AZ do

if IZ ∪ {X→ Y } |= Xj→ Yj
then

return(true) { and exit }
od

return(false) { only reached if for-loop is done }

Rule FIA2 shows the influence of afd’s on the implication problem for

fdi’s:

Theorem 6.6 Let I ∪ A be not in conflict, X,Y, Z, T, U ⊆ Ω, Z ⊆ X

and Z ⊆ T . I ∪ A |= X → Y
Z⊃− T → U iff IZ |= X→ Y

Z⊃− T → U or

IZ ∪AZ |= X ̸̸−Z→ Y .

Proof The if part is trivial (using FIA2 if IZ ∪AZ ⊢ X ̸̸−Z→ Y ).

For the only-if-part, assume that IZ ̸|= X→ Y
Z⊃− T→ U and IZ ∪AZ ̸|=

X ̸̸−Z→ Y . By the proof of Theorem 6.5 IZ∪AZ∪{X→ Y } is not in conflict.

Hence by Lemma 6.6 there exists an instance in which I ∪A holds and in

which X→ Y
Z⊃− T → U does not hold. Hence I∪A ̸|= X→ Y

Z⊃− T → U .

An immediate consequence of the above theorem is:

Corollary 6.3 The rules FI0, . . . , FI5, FIA1, . . . , FIA3 are complete for

the inference of fdi’s from a set of fdi’s and afd’s.

A membership algorithm for fdi’s (considering the presence of afd’s) is

easily deduced:

Algorithm 6.3 Membership Detection for fdi’s with afd’s

Input: I,A, a set of fdi’s and a set of afd’s, not in conflict; X→ Y
Z⊃−

T→ U an fdi.

Output: true or false

Method:

if I |= X→ Y
Z⊃− T → U

then
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return(true) { and exit }
if I ∪A |= X ̸̸−Z→ Y

then

return(true) { and exit }
else

return(false)

Algorithms 6.2 and 6.3 both take O(n4r2 + n3r2m) time, where n = ♯I,
m = ♯A and r = ♯Ω. This time-complexity is actually the time needed

for calculating IZ and AZ , and is based on a membership algorithm for

FSAT which takes O(n3r2) time.

6.3 The Inheritance of fdi’s and afd’s.

For the (further) decomposition of the subschemes that result from a hor-

izontal decomposition step, we need to know the fdi’s and afd’s that hold

in the subschemes. This inheritance problem is very similar to that for

ifd’s and ad’s.

Notation 6.1 In the sequel we always treat the horizontal decomposition

of a scheme R = (Ω, I ∪ A), according to X → Y
Z⊃− T → U ∈ I, into

the subschemes R1 = σ
X

Z→Y
(R) = (Ω, I1 ∪ A1), and R2 = σ

X ̸̸−Z→Y
(R) =

(Ω, I2 ∪ A2). We assume that I ∪ A is not in conflict, and also that

I ∪ A ̸|= X → Y and I ∪ A ̸|= X ̸̸−Z→ Y . We only require I1 ∪ A1 and

I2 ∪A2 to be generating for the sets of all dependencies which hold in R1

and R2.

Since fd’s cannot be violated by taking a selection of a relation, Remark 4.3

also applies if the decompositions are based on fdi’s instead of cfd’s.

The inclusions of Lemma 5.6 are easily translated into the following inclu-

sions for fdi’s and afd’s, which also express Lemma 5.7:

Lemma 6.8 Using Notation 6.1 we have:

• IZ ∪ {X → Y } ⊆ I1 ⊆ {X ′ → Y ′ Z ′
⊃− T ′ → U ′ | I ∪ A ∪ {X → Y } |=

X ′→ Y ′ Z ′
⊃− T ′→ U ′}.
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• IZ ⊆ I2 ⊆ {X ′→ Y ′ Z ′
⊃− T ′→ U ′ | I ∪A ∪ {X ̸̸−Z→ Y } |= X ′→ Y ′ Z ′

⊃−
T ′→ U ′}.

• AZ ⊆ A1 ⊆ {X ′ ̸̸−Z
′

→ Y ′ | I ∪A ∪ {X→ Y } |= X ′ ̸̸−Z
′

→ Y ′}.
• AZ∪{X ̸̸−Z→ Y } ⊆ A2 ⊆ {X ′ ̸̸−Z

′
→ Y ′ | I∪A∪{X ̸̸−Z→ Y } |= X ′ ̸̸−Z

′
→ Y ′}.

The proof of the inheritance of fdi’s and afd’s relies on the construction of

Lemma 6.6, which has already been used to solve the implication problem.

Theorem 6.7 Using Notation 6.1, an fdi or afd must hold in R1 (resp.

R2) iff it is a consequence of IZ ∪AZ ∪ {X→ Y } (resp. IZ ∪AZ ∪ {X ̸
̸−Z→ Y }).

Proof From Lemma 6.8 it follows that (IZ ∪AZ ∪ {X→ Y })∗ ⊆ (I1 ∪
A1)

∗ ⊆ (I ∪ A ∪ {X → Y })∗ and also that (IZ ∪ AZ ∪ {X ̸̸−Z→ Y })∗ ⊆
(I2 ∪A2)

∗ ⊆ (I ∪A∪ {X ̸̸−Z→ Y })∗. We prove that the first inclusions are

equalities.

Let I ∪A∪ {X→ Y } |= T ̸̸−V→ U but IZ ∪AZ ∪ {X→ Y } ̸|= T ̸̸−V→ U . We

prove that T ̸̸−V→ U does not hold in R1.

IZ ∪AZ ∪ {X→ Y } ̸|= T ̸̸−V→ U implies that IZ ∪AZ ∪ {X→ Y } ∪ {T →
U} is not in conflict, by the proof of Theorem 6.5. By the proof of

Lemma 6.6 one can construct an instance r in which I ∪ A holds but in

which

T ̸̸−V→ U does not hold. One starts with r1 = Arm(FSATIZ∪{X→Y }(T,U))

this time, and adds copies of Arm(FSATI(Ø,Ø )) to obtain r. From the

construction, used in the proof of Lemma 6.6 one can easily see that

r1 = σ
X

Z→Y
(r), since the copies of Arm(FSATI(Ø,Ø )) have X ̸̸−Z→ Y and

have different Z-values than those occurring in r1. Hence we obtain an

instance in which I ∪A holds, and such that T ̸̸−V→ U does not hold in r1.

Hence T ̸̸−V→ U ̸∈ (I1 ∪A1)
∗.

The proof of the other three cases (an fdi in R1, and afd in R2 and an

fdi in R2) is similar, and also similar to the proof for cfd’s an ad’s, and

therefore left to the reader.

From Theorem 6.7 one can easily deduce an algorithm which calculates

generating sets for the inherited dependencies in O(n4r2 + n3r2m) time
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where n = ♯I, m = ♯A and r = ♯Ω. Hence this also is the time-complexity

of the following algorithm:
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Algorithm 6.4 A Horizontal Decomposition Step with fdi’s and afd’s

Input: R = (Ω, I ∪ A) and an fdi X → Y
Z⊃− T → U ∈ I. I ∪ A is

assumed not to be in conflict, I ̸|= X→ Y and I ∪A ̸|= X ̸̸−Z→ Y .

Output: An ordered pair of schemes (R1 = (Ω, I1 ∪ A1), R2 = (Ω, I2 ∪
A2)), being the decomposition of R according to X→ Y

Z⊃− T → U .

Method:

var IZ , IZ1, IZ2 : set of fdi’s := Ø

AZ : set of afd’s := Ø

begin

for each Xi→ Yi
Zi⊃− Ti→ Ui in I do

if I |= Xi→ Yi or I |= Zi→ Z or U ⊆ T or

({both} X ⊆ T and U − T ⊆ Y −X)

then

IZ := IZ ∪ {Xi→ Yi
Zi⊃− Ti→ Ui}

od

for each Xj ̸̸−
Zj→ Yj in A do

if I |= Zj→ Z

then

AZ := AZ ∪ {Xj ̸̸−
Zj→ Yj}

od

for each Xi→ Yi
Zi⊃− Ti→ Ui in IZ do

if IZ ∪ {X→ Y } ∪ {T → U} ̸|= Xi→ Yi and

IZ ∪ {X→ Y } ∪ {T → U} ∪AZ ̸|= Xi ̸̸−
Zi→ Yi

then

IZ1 := IZ1 ∪ {Xi→ Yi
Zi⊃− Ti→ Ui}

od

for each Xi→ Yi
Zi⊃− Ti→ Ui in IZ do

if IZ ̸|= Xi→ Yi and

IZ ∪ {X ̸̸→ Y } ∪AZ ̸|= Xi ̸̸−
Zi→ Yi

then

IZ2 := IZ2 ∪ {Xi→ Yi
Zi⊃− Ti→ Ui}

od

return(R1 = (Ω, IZ1 ∪ {X→ Y } ∪ {T → U} ∪AZ),
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R2 = (Ω, IZ2 ∪AZ ∪ {X ̸̸→ Y }))
end

This algorithm again treats the trivial fdi’s in such a way that the decom-

position that is generated in case of all trivial fdi’s is equivalent to the

inherited decomposition into HNF.

6.4 The “FDI” Normal Form

In this section we illustrate an algorithm for horizontal decomposition

of a relation scheme, according to its fdi’s. The algorithm decomposes

the scheme (and subschemes) until no subscheme can be decomposed any

further. This is formalized by defining the following normal form:

Definition 6.9 A scheme R = (Ω, I ∪ A) is said to be in FDI-Normal

Form, (FDINF) iff for all X → Y
Z⊃− T → U ∈ I either I |= X → Y or

I ∪A |= X ̸̸−Z→ Y .

A decomposition (R1, . . . , Rn) is in FDINF iff all the Ri, i = 1 . . . n are in

FDINF.

If only trivial fdi’s are given the horizontal decomposition into FDINF gen-

erates the inherited decomposition into HNF . If all fdi’s are cfd’s, the hor-

izontal decomposition into CNF (Conditional Normal Form) is obtained.

If all fdi’s are ifd’s, the horizontal decomposition into INF is obtained.

So the decomposition using fdi’s generalizes all previous decompositions.

(We could also create “clean” decompositions using fdi’s).

To illustrate the horizontal decomposition into FDINF, we modify Exam-

ple 2.1 once more:

Example 6.1 Recall Example 2.1. In Section 6.1 we showed three fdi’s

for STAFF :

• emp div→ job man dep
div⊃− emp div→ sal

• dep div→ job
div⊃− emp div→ job sal man

• dep div→ job
div⊃− man div→ dep
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The goals given in Example 2.1 are not all represented in this example, to

keep it reasonably small. Figure 6.1 shows a decomposition tree for the

decomposition of STAFF into FDINF.

Note that in STAFF11 the fdi dep div→ job
div⊃− emp div→ job sal man

has been applied, although the fdi dep div→ job
div⊃− man div→ dep would

have given the same result, since the decomposition only depends on the

“left fd” of an fdi.

In STAFF2, dep div ̸̸→ job holds: dep div → job
div⊃− job sal man and

dep div → job
div⊃− man div → dep induce dep div → job

div⊃− emp div

→ job sal man dep. But since emp div ̸̸→ job man dep,

emp div ̸̸→ job sal man dep also holds, which induces that dep div ̸̸−div→ job

holds in STAFF2. Hence STAFF2 cannot be decomposed further on.

STAFF

emp div→ job man dep
div⊃− emp div→ sal

dep div→ job
div⊃− emp div→ job sal man

dep div→ job
div⊃− man div→ dep

❄✓
✒

✏
✑emp div→ job man dep

div⊃− emp div→ sal
0

0✠
❅
❅❘

STAFF1
emp div→ job man dep sal

dep div→ job
div⊃− emp div→ job sal man

dep div→ job
div⊃− man div→ dep

STAFF2

emp div ̸̸−div→ job man dep
dep div ̸̸→ job

❄✓
✒

✏
✑dep div→ job

div⊃− emp div→ job sal man
0

0✠
❅
❅❘

STAFF11
emp div→ job man dep sal

dep div→ job
man div→ dep

STAFF12
emp div→ job man dep sal

dep div ̸̸→ job

Figure 6.1: A decomposition tree for STAFF , into FDINF.
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Recall Table 4.1. After the decomposition of staff into FDINF , as shown

in Figure 6.1, one obtains a very strange result: all tuples belong to staff2.

The reason for this result is that our instance does not reflect the structure

of a company for which the database scheme is chosen: In the “large”

divisions every employee should have only one job, one manager and one

department for every division he works for. If we consider the Los Angeles

division as a large division, the secretary Murrel should not be working

for three managers. If we delete the tuples

Murrel secretary Wallace 1000 sales Los Angeles

Murrel secretary Diamond 1000 sales Los Angeles

the Los Angeles division becomes a “large” division, and will be included

in staff12. But for becoming a part of staff11 each department should have

only one job, which means that the meaning of the attribute job should

relate to the department, whereas in our example it relates to employees.
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Chapter 7

Decomposition with fsi’s

In the previous chapter we claimed that the functional dependency im-

plication was the most general partial implication between fd’s. In this

chapter however we introduce a still more general constraint: the func-

tional dependency set implication.

This chapter covers [16]. The horizontal decomposition according to an

fdi not only induces the “right” fd, but also the “right” fd of all other

fdi’s with the same “left fd”. In Example 6.1 we have seen this: the

fdi dep div → job
div⊃− emp div → job sal man and dep div → job

div⊃−
man div→ dep have the same condition: dep div→ job. In this chapter

we introduce a constraint which enables us to combine such fdi’s into one

new constraint.

7.1 Functional Dependency Set Implications

The general idea behind the functional dependency implication is that if

some fd holds in part of the database, this may induce some other fd in

that part of the database. In this chapter we generalize this idea: if some

set of fd’s holds in a part of the database, this may induce another set of

fd’s in that part of the database.

There are two reasons for introducing this new constraint:

1. The first reason is a semantic one: if several fdi’s have the same left

fd, then the decomposition according to one of these fdi’s induces the

right fd’s of all these fdi’s. Hence it is better to combine these fdi’s

into one constraint.

131
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2. The second reason is both semantic and technical: the semantic rea-

son is that by putting more than one fd in the left part we obtain a

new and more general class of constraints. But this also has a tech-

nical advantage, even if we combine two fdi’s into one of these new

constraints (and obtain a weaker constraint): the maximal number of

subrelations that result from a horizontal decomposition is exponential

in the number of fdi’s. In our examples we have had to be careful of

not generating too many subrelations. If several fdi’s are combined into

one constraint the number of subrelations decreases (but the number of

different kinds of exceptions that can be distinguished also decreases).

Let us first recall Example 2.1 and 6.1. If in a division every department

treats only one job, every employee has only one job and every manager

supervises only one job (for this division), then (the division is so large

that) every employee works in only one department and has only one

salary, and every manager supervises (employees) in only one department

(for that division).

This constraint will be written as:

{div dep→ job, div emp→ job, div man→ job}
div⊃− {div emp→ dep sal, div man→ dep}

Note that none of the fd’s of the second (or “implied”) set are logical

consequences of the first set of fd’s. They are said to be implied by the

first set of fd’s by observing the real world.

We now define this constraint, and the horizontal decomposition induced

by it, more formally.

Definition 7.1 Let R be a relation scheme, Z ⊆ Ω, and let F1 and F2

be sets of fd’s over Ω, such that ∀X→ Y ∈ F1 ∪ F2 : Z ⊆ X.

• A relation instance r of R satisfies the functional dependency set im-

plication (fsi) F1
Z⊃− F2, iff in every Z-complete set of tuples in r, in

which all the fd’s of F1 hold, all the fd’s F2 must hold too.

• The scheme R satisfies F1
Z⊃− F2 iff all the instances of R satisfy

F1
Z⊃− F2.
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The requirement that all “left hand sides” of the fd’s of F1 and F2 must

include Z is necessary because we want to generate the fd’s in the subrela-

tions that result from a horizontal decomposition step. We can eliminate

this restriction if we modify the definition as for fdi’s:

Definition 7.2 Let R be a relation scheme, Z ⊆ Ω, and let F1 and F2

be sets of fd’s over Ω.

• A relation instance r of R satisfies the unrestricted functional depen-

dency set implication (ufsi) F1
Z⊃− F2 iff in every Z-unique Z-complete

set of tuples in r, in which all the fd’ of F1 hold, all the fd’s of F2 must

hold too.

• The scheme R satisfies F1
Z⊃− F2 iff all the instances of R satisfy

F1
Z⊃− F2.

The reason for considering Z-unique Z-complete sets of tuples is the same

as for ufdi’s, and makes that the ufsi’s are not more powerful than the

fsi’s:

Remark 7.1 The ufsi F1
Z⊃− F2 is equivalent to the fsi F ′

1
Z⊃− F ′

2 where

F ′
1 = {XZ→ Y | X→ Y ∈ F1} and F ′

2 = {XZ→ Y | X→ Y ∈ F2}.

The fdi’s of Chapter 6 are special fsi’s where F1 and F2 each contain

only one fd. Since fd’s, cfd’s and ifd’s are special fdi’s they are fsi’s too.

In particular fd’s can be expressed in many ways as fsi’s, some of which

are fdi’s. X → Y is equivalent to {X → X} X⊃− {X → Y } for instance,

which is an fdi (in fact even a cfd). But X → Y is also equivalent to

Ø
X⊃− {X→ Y } for instance, which is not an fdi.

Definition 7.3 Let R = (Ω,∆, dom,M,SC) be a relation scheme, Z ⊆
Ω, F a set of fd’s over Ω, such that ∀X→ Y ∈ F : Z ⊆ X.

• For every instance r of R, the selection for FZ of r, σFZ
(r), is the

largest Z-complete subset (of tuples) of r in which all fd’s of F hold.

• The selection for FZ of R, σFZ
(R), is a scheme R1 = (Ω,∆, dom,M1,

SC1). The calculation of SC1 will be described in Section 7.3. SC1

contains F of course. M1 explains that all instances of R1 must be the

selection for FZ of the instances of R.
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We require Z ⊆ X for all X→ Y ∈ F to make sure that X-values of r are

not split up by taking a selection for FZ .

Definition 7.4 The horizontal decomposition of an instance r, according

to the fsi F1
Z⊃− F2, is the ordered pair (r1, r2), where r1 = σF1Z

(r) and

r2 = r − r1.

The horizontal decomposition of a scheme R, according to the fsi F1
Z⊃−

F2, is the ordered pair (R1, R2), where R1 = σF1Z
(R) and R2 = R−R1.

Note from Definition 7.4 that the horizontal decomposition of a scheme,

according to F1
Z⊃− F2 does not depend on F2, but it induces the F2 in

R1. Hence one can always perform a horizontal decomposition to generate

a subrelation with a “desirable” set of fd’s F1, by using the “trivial” fsi

F1
Z⊃− Ø.

In r2, which contains the exceptions, for every Z-value at least one of the

fd’s of F1 must not hold. The following definition formalizes this new

notion of “exception”.

Definition 7.5 Let R be a relation scheme, Z ⊆ Ω, and let F be a set of

fd’s, such that ∀X→ Y ∈ F : Z ⊆ X.

• A relation instance r of R satisfies the anti-functional dependency set

(afs) \\FZ iff in every nonempty Z-complete set of tuples, in r, at least

one fd of F does not hold.

• The scheme R satisfies \\FZ iff all the instances of R satisfy \\FZ .

Definition 7.6 Let R = (Ω,∆, dom,M,SC) be a relation scheme. Let r

be an instance of R.

• The selection for \\FZ of r, σ\\FZ
(R), is the largest Z-complete set of

tuples of r in which \\FZ holds.

• The selection for \\FZ of R, σ\\FZ
(R) is the scheme R2 = (Ω,∆, dom,M2,

SC2). The calculation of SC2 will be described in Section 7.3. M2

explains that all instances of R2 must be the selection for \\FZ of the

instances of R.

One can easily see that R − σFZ
(R) = σ\\FZ

(R), hence the horizontal de-

composition of R according to F1
Z⊃− F2 is (σF1Z

(R),σ\\F1Z
(R)).
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The afd’s (of Chapter 6) are afs’ \\FZ for which F contains only one fd.

From now on we shall assume that the set of constraints SC of a relation

scheme R consists of a set I of fsi’s and a set A of afs’. (Note that I
contains the fd’s, cfd’s, ifd’s and fdi’s, and that A contains the ad’s and

afd’s).

As in the previous chapters we first show how to detect conflict. Therefore

we need the following special set of fd’s:

Definition 7.7 FSATI(F) is the smallest possible set of fd’s, such that:

1. F ⊆ FSATI(F).

2. If Fi1 ⊆ FSATI(F) and Fi1

Zi⊃− Fi2 ∈ I then Fi2 ⊆ FSAT (F).

3. FSATI(F) = (FSATI(F))∗.

FSATI(F) can be constructed starting from F and by repeatedly trying

to satisfy 2 and 3 of the definition.

Note that FSATI(F) = FSATI∪F (Ø ). This equality will be used several

times without further notice.

Lemma 7.1 FSATI(F) = {P → Q | I ∪ F |= P → Q}.
Proof Consider Arm(FSATI(F)). By Definition 7.7 it is clear that I ∪
F holds in Arm(FSATI(F)). Hence all the fd-consequences of I ∪F also

hold. By Theorem 2.1 this implies that all these fd’s are in (FSATI(F))∗.
Part 3 of Definition 7.7 implies that these fd’s are in FSATI(F).

The opposite inclusion is obvious from Definition 7.7.

From the above lemma we immediately deduce that for all sets of fd’s F
over Ω holds that I |= F iff F ⊆ FSATI(Ø ).

With the above lemma we can easily show how to detect conflict:

Theorem 7.1 I ∪A is in conflict iff for some afs \\FZ of A, I |= F holds.

Proof The if-part is trivial.

For the only-if-part, consider Arm(FSATI(Ø )), in which I holds. Hence

if I ∪ A is in conflict some \\FZ of A does not hold. By Theorem 2.1 this

implies that all fd’s of F are consequences of FSATI(Ø ), which implies

that F ⊆ FSATI(Ø ) by part 3 of Definition 7.7. Lemma 7.1 then says

that I |= F .
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This Theorem shows that the set Z of an afs \\FZ is not important for the

conflict detection.

Algorithm 7.1 Conflict Detection

Input: I,A, a set of fsi’s and a set of afs’.

Output: true or false.

Method:

for each \\FZ in A do

if I |= F
then

return(true) { and exit }
od

return(false) { only reached if for-loop is done }

The if-test I |= F can be calculated by a membership algorithm for

FSATI(Ø ). This is essentially the same as for cfd’s, given in Algo-

rithm 4.2. We shall describe the algorithm in the next section. The

time-complexity becomes O(n3r2m) where r = ♯Ω, n = the number of the

fd’s in all fsi’s of I together, and m = the number of the fd’s in all afs’ of

A together.

7.2 The Implication Problem for fsi’s and afs’

The implication problem for fsi’s is very similar to that of fdi’s, except

that we use a different set of inference rules.

We denote the set of all fd’s which are consequences of a set F of fd’s by

F∗. The set of all fd’s X→ Y of F∗ for which Z ⊆ X is denoted by F∗Z .

For fsi’s we have the following inference rules:

(FS1) : if F2 ⊆ F∗Z
1 and ∀X→ Y ∈ F1 : Z ⊆ X then F1

Z⊃− F2.

(FS2) : if F1
Z⊃− F2 and F1

Z⊃− F3 then F1
Z⊃− F2 ∪ F3.

(FS3) : if F1
Z⊃− F2 and F2

Z⊃− F3 then F1
Z⊃− F3.

(FS4) : if F1
Z⊃− F2 and Z→ Z ′ then F∗Z ′

1
Z ′
⊃− F∗Z ′

2 .

(FS5) : if F1 holds and F1
Z⊃− F2 then F2 holds and if F2 holds and

∀X→ Y ∈ F1 ∪ F2 : Z ⊆ X then F1
Z⊃− F2 holds.
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As fd’s are special fsi’s the use of fd’s in these rules is allowed. In fact

FS5 shows all representations of fd’s as fsi’s.

Before we prove the soundness of these rules we first show how to deduce

the rules for fdi’s from F1, . . . , F3, FS1, . . . , FS5. We include F1, . . . , F3,

since they are needed to calculate F∗Z from F .

Lemma 7.2 The rules F1, . . . , F3, FS1, . . . , FS5 are complete for fdi’s

(and hence also for ifd’s, cfd’s and fd’s).

Proof We show how to deduce the rules FI0, . . . , F I5 from FS1, . . . , FS5:

FI0 : Let Z ⊆ X, Z ⊆ T , Y ⊆ X, Z ′ ⊆ X ′, Z ′ ⊆ T , Y ′ ⊆ X ′,

{X → Y } Z⊃− {T → U}. Then X → Y holds (by F1), hence

T → U holds by the first part of FS5. Since Z ′ ⊆ T and Z ′ ⊆ X ′

and T → U hold, the second part of FS5 induces that {X ′ →

Y ′} Z ′
⊃− {T → U} holds.

FI1 : Let Z ⊆ X and Z ⊆ T and either U ⊆ T or both X ⊆ T and

U − T ⊆ Y − X. Then either T → U is trivial (F1) or T → U

follows from T → UY and UY → Y by F3, where T → UY

follows from X → Y by F2 and UY → Y holds by F1. Hence

{T → U} ⊆ {X→ Y }∗Z . {X→ Y } Z⊃− {T → U} then follows by

FS1.

FI2 : Let {X → Y } Z⊃− {T → U} and W ⊆ V . Then {T → U} Z⊃−
{TV → UW} holds by FS1 and together these two fsi’s induce

{X→ Y } Z⊃− {TV → UW} by FS3.

FI3 : Let {X → Y } Z⊃− {T → U} and {X → Y } Z⊃− {U → V }. Then

{X → Y } Z⊃− {T → U , U → V } holds by FS2. Together with

{T → U , U → V } Z⊃− {T → V } (which holds by F3 and FS1)

this induces {X→ Y } Z⊃− {T→ V } by FS3.

FI4 : is a special case of FS3.

FI5 : Let {X→ Y } Z⊃− {T → U} and Z→ Z ′. Then {X→ Y }∗Z ′ Z ′
⊃−

{T → U}∗Z ′
holds by FS4. {XZ ′ → Y } Z⊃− {Z→ Z ′} holds by

FS5 and together with {XZ ′ → Y } Z⊃− {XZ ′ → Y } (FS1) this

induces {XZ ′→ Y } Z⊃− {XZ ′→ Y , Z→ Z ′} by FS2. From the

two fd’sXZ ′→ Y and Z→ Z ′ and the inclusion Z ⊆ X one easily
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deduces X → Y . Hence by FS1 and FS3 one obtains {XZ ′ →

Y } Z⊃− {X→ Y }. Hence {XZ ′ → Y }∗Z ′ Z ′
⊃− {X→ Y }∗Z ′

holds

by FS4. FS3 applied to {XZ ′ → Y }∗Z ′ Z ′
⊃− {X → Y }∗Z ′

and

{X → Y }∗Z ′ Z ′
⊃− {T → U}∗Z ′

gives {XZ ′ → Y }∗Z ′ Z ′
⊃− {T →

U}∗Z ′
. Applying FS3 again, with {XZ ′ → Y } Z ′

⊃− {XZ ′ →

Y }∗X ′
(FS1) gives {XZ ′ → Y } Z ′

⊃− {T → U}∗Z ′
. Since TZ ′ →

U ∈ {T→ U}∗Z ′
FS1 and FS3 give {XZ ′→ Y } Z ′

⊃− {TZ ′→ U}.

The most important element in the above proof (used for FI5) is described

by the following remark:

Remark 7.2 If Z → Z ′ and ∀X → Y ∈ F : Z ⊆ X then F and F∗Z ′

are equivalent. In general however, (if Z ↛ Z ′) F is more powerful than

F∗Z ′
.

We now turn to the proof of the soundness of the inference rules.

Theorem 7.2 The rules FS1, . . . , FS5 are sound.

Proof This is very similar to the proof for fdi’s. We give the proof for

FS4 as an example (since this is the most complicated one).

Let F1
Z⊃− F2 and Z → Z ′ hold in an instance r. Consider an arbitrary

Z ′-complete set of tuples s in r, in which all fd’s of F∗Z ′
1 hold. (For the

other Z ′-complete sets there is nothing to prove). We prove that F∗Z ′
2

holds in this set of tuples.

Since Z→ Z ′ s is also Z-complete. Suppose some fd X→ Y of F1 does not

hold in s. Then XZ ′→ Y does not hold since XZ ′→ Y and Z→ Z ′ (and
Z ⊆ X) would induce X → Y . Since XZ ′ → Y ∈ F∗Z ′

1 (since Z ′ ⊆ XZ ′

and X→ Y induces XZ ′→ Y by augmentation) we have a contradiction

that F∗Z ′
1 holds in s.

The fsi F1
Z⊃− F2 then induces that F2 holds in this Z-complete set of

tuples. Since all fd’s of F∗Z ′
2 are consequences of F2, F∗Z ′

2 holds in s.

Lemma 7.1 shows that FSAT is a set which characterizes the fd’s that are

a consequence of I. The following Lemma shows that these fd’s can be

generated using our inference rules.



7.2. The Implication Problem for fsi’s and afs’ 139

Lemma 7.3 FSATI(F) = {P → Q | I ∪ F ⊢ P→ Q}.

Proof From Lemma 7.1 and Theorem 7.2 we know that: {P → Q |
I ∪ F ⊢ P→ Q} ⊆ FSATI(F).

For the opposite inclusion we show that the property, that all elements

of FSATI(F) can be deduced from I ∪ F , remains valid throughout the

construction of FSATI(F).

• If P→ Q ∈ F then the property is trivial.

• If P → Q is added to FSATI(X,Y ) in part 2 of Definition 7.7 then

P → Q ∈ Fi2 for some Fi1

Zi⊃− Fi2 ∈ I. By the induction hypothesis all

fd’s of Fi1 can be inferred from I ∪F . Hence by rule FS5 I ∪F ⊢ Fi2.

Rule FS5 applied to Fi2 and Fi2

Zi⊃− {P→ Q} (holding by FS1) gives

I ∪ F ⊢ P → Q.

• If P → Q is added in part 3 of Definition 7.7 then it can be deduced

from fd’s for which the property holds, by using F1 . . . F3. Hence

I ∪ F ⊢ P → Q.

If one chooses F = Ø then the following result becomes obvious:

Corollary 7.1 F1 . . . F3, FS1 . . . FS5 are complete for the inference of

fd’s from a set of fsi’s.

In the construction of FSATI(Ø ) only those fsi’s Fi1

Zi⊃− Fi2 of I are used

(in part 2) for which I |= Fi1 (and hence also I |= Fi2). This leads to the

following lemma:

Lemma 7.4 Let IZ = {Fi1

Zi⊃− Fi2 ∈ I : I |= Zi→ Z or I |= Fi1}. Then

I |= P→ Q iff IZ |= P → Q (for any Z).

The proof of the completeness of our inference rules for fsi’s uses a similar

technique as for fdi’s.

Lemma 7.5 Let IZ be as in Lemma 7.4. Let F be such that ∀X→ Y ∈
F : Z ⊆ X. If P → Q ∈ FSATIZ (F) then I |= P → Q or I |= P → Z.

Proof We prove that the property remains valid throughout the con-

struction of FSATIZ(F).

• If P→ Q ∈ F then P→ Z is trivial.
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• If P → Q is added in part 2 of Definition 7.7 then P → Q ∈ Fi2 for

some Fi1

Zi⊃− Fi2 ∈ IZ . There are two possibilities (by the definition

of IZ): I |= Fi1 or I |= Zi→ Z.

– If I |= Fi1 then I |= Fi2 by FS5, hence obviously I |= P → Q ∈ Fi2.

– If I |= Zi→ Z then I |= P → Z by augmentation (since Zi ⊆ P if

P → Q ∈ Fi2).

• If P→ Q is added in part 3 then it is derived from other fd’s (already

in FSATIZ(F)) by F1, . . . , F3.

– If Q ⊆ P then P → Q is trivial.

– If P = P ′P ′′, Q = Q′Q′′, with P ′ → Q′ already in FSATIZ (F)

and Q′′ ⊆ P ′′, then P → Q or P → Z is deduced from P ′→ Q′ or
P ′→ Z by augmentation.

– If P → O and O→ Q already are in FSATIZ (F) then P → Q or

P → Z is deduced from P → O or P→ Z and O→ Q or O→ Z by

transitivity.

The following lemma partially solves the membership problem for fsi’s:

Lemma 7.6 Let IZ be as in Lemma 7.4. Let F1 be such that ∀X→ Y ∈
F1 : Z ⊆ X, F2 such that ∀X→ Y ∈ F2 : Z ′ ⊆ X, and let I |= Z ′ → Z.

Then IZ |= F1
Z⊃− F∗Z

2 iff F2 ⊆ FSATIZ (F1).

Proof If IZ |= F1
Z⊃− F∗Z

2 then obviously F∗Z
2 ⊆ FSATIZ(F1). Since

I |= Z ′ → Z F∗Z
2 is equivalent to F2 by Remark 7.2. Hence also F2 ⊆

FSATIZ (F1) by part 3 of Definition 7.7.

For the converse we proceed as in Lemma’s 7.3 and 7.5, by proving that

the property remains valid throughout the construction of FSATIZ (F1).

• If F2 = F1 then rule FS1 gives F1
Z⊃− F∗Z

2 .

• If F2 is added to FSATIZ(F) in part 2 of Definition 7.7 then F2 = Fi2

for some Fi1
Z⊃− Fi2 ∈ IZ . There are 2 possibilities (by the definition

of IZ):
– If I |= Fi1 then IZ |= Fi1 by Lemma 7.4. Hence IZ |= Fi2 by

rule FS5. Hence also IZ |= F∗Z
i2

since Fi2 induces F∗Z
i2

. F1
Z⊃− Ø
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(holding by FS1) and Ø
Z⊃− F∗Z

i2
(a representation for fd’s, by FS5)

induce F1
Z⊃− F∗Z

i2
= F1

Z⊃− F∗Z
2 by rule FS3.

– If I |= Zi→ Z then we have that F1
Z⊃− F∗Z

i1
by induction. Since

Zi→ Z, Fi1

Zi⊃− Fi2 induces F∗Z
i1

Z⊃− F∗Z
i2

by FS4. Hence F1
Z⊃−

F∗Z
i2

= F1
Z⊃− F∗Z

2 by FS3.

• If F2 is added to FSATIZ (F1) in part 3 of Definition 7.7 then F2 ⊆ F∗

for some F that was a part of FSATIZ (F1) already.

From Lemma 7.5 we know that for all X → Y ∈ F : IZ ⊢ X→ Y or

IZ ⊢ X→ Z.

– If IZ ⊢ X → Y then IZ ⊢ XZ → Y (by F2), hence IZ ⊢ F1
Z⊃−

{XZ→ Y } by FS3 on F1
Z⊃− Ø and Ø

Z⊃− XZ→ Y (FS5).

– If IZ ⊢ X → Z then IZ ⊢ F1
Z⊃− {XZ → Y } holds by induction

(since XZ→ Y ∈ {X→ Y }∗Z).
Let F ′ = {XZ→ Y ∈ F | IZ ⊢ X→ Z or IZ ⊢ X→ Y }, then by FS2

IZ ⊢ F1
Z⊃− F ′. One can easily see that F∗Z = F ′∗Z (using F1 . . . F3),

hence IZ ⊢ F1
Z⊃− F∗Z by FS3 on F1

Z⊃− F ′ and F ′ Z⊃− F ′∗Z = F∗Z

(FS1). Hence by FS3 and FS1 one infers IZ ⊢ F1
Z⊃− F2.

From the proof of Lemma 7.6 one can see that:

Corollary 7.2 Let IZ be as in Lemma 7.4, let F1 and F2 be such that

∀X→ Y ∈ F1 ∪ F2, Z ⊆ X. Then IZ ⊢ F1
Z⊃− F2 iff F2 ⊆ FSATIZ (F1).

To complete the proof of the completeness of F1 . . . F3, FS1 . . . FS5 for

fsi’s it remains to show that the fsi’s of I − IZ have no influence on

I |= F1
Z⊃− F2. To prove this we need a complicated construction of an

instance, similar to that of Lemma 6.6, which we shall also be needing to

prove the completeness for mixed fsi’s and afs’. Therefore we include the

properties of this instance, related to afs’, in the following lemma:

Lemma 7.7 Let I ∪ A be not in conflict. Let IZ be as in Lemma 7.4.

Let AZ = {\\FiZi
∈ A | I |= Zi → Z}. Let IZ ∪ AZ ̸|= F1

Z⊃− F2 (or let

IZ ∪AZ ̸|= \\F1Z ). Then we can construct an instance in which I ∪A holds

but in which F1
Z⊃− F2 (resp. \\F1Z) does not hold.
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Proof Suppose IZ ∪ AZ ̸|= F1
Z⊃− F2. We shall see later that in r1 =

Arm(FSATIZ (F1)) AZ holds. By Lemma 7.6 F2 ̸⊂ FSATIZ (F1), hence

F2 does not hold in r1. From Theorem 2.1 we can easily deduce that this

means that for some X → Y ∈ F2, X ̸̸−X→ Y holds in r1, hence X ̸̸−Z→ Y

holds (by F1 and FA3). We also know (from rule FA2) that \\F1Z cannot

hold in r1.

In r1 a number of fsi’s of I − IZ and a number of afs’ of A−AZ may not

hold. This will be solved by “adding” copies of s = Arm(FSATI(Ø )). In

s I ∪A holds, as one can easily see.

Let some Fi1

Zi⊃− Fi2 ∈ I−IZ not hold in r1. Then (Theorem 2.1) all fd’s

of Fi1 hold and some fd’s of Fi2 do not hold. Since Fi1

Zi⊃− Fi2 ̸∈ IZ for

some fd T → U ∈ Fi1 : I ̸|= T → U .

Let the values that occur in s be renamed such that they all become

different from the values of r1, except that for some t1 ∈ r1, t2 ∈ s :

t1[Zi] = t2[Zi], where Zi = {A | I |= Zi→ A}. The “modified” union of

r1 and s satisfies the following properties:

• In r1 ∪ s, IZ still holds: let Fj1

Zj
⊃− Fj2 ∈ IZ not hold. Then there are

two cases:

1. either I |= Fj1, hence I |= Fj2 by FS5, and if Fi2 no longer holds

then ∃t′1 ∈ r1, ∃t′2 ∈ s, ∃Tj→ Uj ∈ Fj2: t
′
1[Tj] = t′2[Tj] and t′1[Uj] ̸=

t′2[Uj], and hence Tj ⊆ Zi and t′1[Tj] = t′2[tj] = t1[Tj], but then also

Uj ⊆ Zi since I |= Tj → Uj, hence t′1[Uj] = t′2[Uj] = t1[Uj], a

contradiction.

2. or I |= Zi→ Z, but then Tj ⊆ Zi (which holds for some Tj→ Uj ∈
Fj2 that does not hold in r1∪ s) and Zj→ Z would induce Z ⊆ Zi,

a contradiction with Fi1

Zi⊃− Fi2 ̸∈ IZ .
• In r1∪s, AZ still holds since it is impossible to violate an afs by taking

a union of two instances in which that afs holds.

• In r1∪s every fsi of I−IZ and every afs of A−AZ which already holds

in r1 (and also in s of course) still holds. For the afs’ the reason is the

same as for those of AZ . For the fsi’s we have that if Fk1

Zk⊃− Fk2 ∈
I−IZ holds in R1 then \\Fk1Zk

holds in r1 and s, and such an afs is not
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violated by the union. FA2 shows that this afs implies Fk1

Zk⊃− Fk2.

• In r1 ∪ s, \\F1Z still does not hold, since it does not hold in r1 and since

(as explained above) r1 and r2 do not “share” a common Z-value which

could influence \\F1Z in R1 (otherwise Z ⊆ Zi).

• In r1 ∪ s, \\F2Z may no longer hold, because it may not hold in s. But

in the “r1-part” of r1 ∪ s, FZ
2 still holds, since r1 and s do not share a

Z-value (and hence also no T -value for any T→ U ∈ F2).

• But in r1 ∪ s the number of Zi-values for which all Xin → Yin ∈ F1

hold (and for which some Tin → Uin ∈ F2 does not hold) is decreased

by one, since the Zi-value containing t1 collapses with the Zi-value of

s, containing t2, (in which \\Fi1Zi
holds), and since s has no Zi-values

for which all Xin→ Yin ∈ Fi1 hold.

By repeating the above construction for all other Zi-values for which Fi1

holds one can generate a relation in which Fi1

Zi⊃− Fi2 holds (since \\Fi1Zi
holds).

By then repeating the above construction for all fsi’s of I − IZ which do

not hold in Arm(FSATIZ (F1)) one generates a relation in which I holds

(and F1
Z⊃− F2 still does not hold).

For the afs’ of A−AZ the construction proceeds in a similar way.

If IZ ∪ AZ ̸|= \\FZ then we shall see later that in Arm(FSATIZ (F)) AZ

holds, as well as IZ ∪ {F}. The same construction as above leads to an

instance in which I ∪A holds, and in which \\FZ does not hold.

Theorem 7.3 F1 . . . F3, FS1 . . . FS5 are complete for fsi’s.

Furthermore, let F1 and F2 be such that ∀X → Y ∈ F2 ∪ F2 : Z ⊆ X,

then I ⊢ F1
Z⊃− F2 iff F2 ⊆ FSATIZ (F1).

Proof If I |= F1
Z⊃− F2 then by Lemma 7.7 IZ |= F1

Z⊃− F2. Lemma 7.6

yields F2 ∈ FSATIZ (F1), while Corollary 7.2 implies IZ ⊢ F1
Z⊃− F2.

The converse is trivial.
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Before we solve the implication problem for mixed fsi’s and afs’ we first

propose a set of inference rules:

FSA1 : if F1
Z⊃− F2 and \\F2Z then \\F1Z .

FSA2 : if \\F1Z and ∀X→ Y ∈ F2 : Z ⊆ X then F1
Z⊃− F2.

FSA3 : if \\FZ and Z→ Z ′ then \\F∗Z ′
Z ′ .

FSA4 : if \\F1Z and F∗Z
1 ⊆ F∗Z

2 and ∀X→ Y ⊆ F2 : Z ⊆ X then \\F2Z .

Lemma 7.8 Rules FSA1, . . . , FSA4 are sound.

Proof This is fairly straightforward, using a similar argument as for the

rules for fsi’s. We prove rule FSA3 as an example.

Suppose \\F∗Z ′
Z ′ does not hold. (The notation may be a bit confusing: \\F∗Z ′

Z ′

means that in every Z ′ complete set of tuples (in an instance satisfying

the constraint) at least one fd of F∗Z ′
must not hold.) Then in some Z ′-

complete set of tuples s all fd’s of F∗Z ′
hold. Since s is also Z-complete

(because of Z→ Z ′) it remains to prove that all fd’s of F hold in s.

Let X → Y ∈ F , then XZ ′ → Y ∈ F∗Z ′
. Z → Z ′ and Z ⊆ X induce

X→ XZ ′ by F2. By F3 we infer that X→ Y holds in s.

Before we show the completeness of the rules for fsi’s and afs’, we show

how to deduce the inference rules for fdi’s and afd’s from the rules for fsi’s

and afs’.

Remark 7.3 F1, . . . , F3, FS1, . . . , FS5, FSA1, . . . FSA4 are complete for

fdi’s and afs’.

Proof We prove the rules FIA1, . . . , FIA3:

FIA1 : Suppose {Z → V }, {X → Y } Z⊃− {T → U} and T ̸̸−Z→ U hold.

(We should write \\FZ where F = {T → U} to be exact.) By

FSA1 we infer X ̸̸−Z→ Y . X → V holds by F2 (augmentation)

on Z → V . Hence XV → Y ∈ {X → Y }∗Z . Rule FSA4 then

generates XV ̸̸−Z→ Y from X ̸̸−Z→ Y . Rules FSA3 and FSA1

induce XV ̸̸−V→ Y (from the trivial {XV → Y } V⊃− {XV → Y }∗V .
Rules FSA4 and FSA1 then induce V ̸̸−V→ Y (using the trivial

{V → Y } V⊃− {V → Y }∗V .
FIA2 : This is a special case of FSA2.
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FIA3 : This is a special case of FSA3.

Theorem 7.4 Let I∪A be not in conflict. I∪A |= \\FZ iff IZ∪AZ |= \\FZ .

Proof The if-part is trivial.

For the only-if-part, suppose IZ∪AZ ̸|= \\FZ . We first show that IZ∪AZ∪F
cannot be in conflict.

Suppose IZ∪AZ∪F is in conflict. Then in Arm(FSATIZ (F)) for some afs

\\F ′
V of AZ , F ′ holds (by Theorem 7.1 and Theorem 2.1). Hence IZ ∪F |=

F ′. Since IZ |= V → Z Lemma 7.6 yields IZ |= F Z⊃− F ′∗Z .

\\F ′
V induces \\F ′

Z
∗Z by rule FSA3. Rule FSA1 (with F Z⊃− F ′∗Z induces \\FZ ,

a contradiction with IZ ∪AZ ̸|= \\FZ .

Hence IZ ∪ AZ ̸|= \\FZ and AZ holds in Arm(FSATIZ (F)) (this was

used in Lemma 7.7, considering that FSA2 deduces F1
Z⊃− F2 from \\F1Z .

Lemma 7.7 then says that there exists an instance in which I ∪ A holds

and in which \\FZ does not hold. Hence I ∪A ̸|= \\FZ .

The proof of the above theorem immediately implies that:

Corollary 7.3 The rules F1, . . . , F3,FS1, . . . , FS5,FSA1, FSA3 and FSA4

are complete for the inference of afs’ from a set of fsi’s and afs’.

For the sake of completeness we show a generalization of Algorithm 4.2

for fsi’s.

Algorithm 7.2 Membership Detection for fsi’s

Input: I = {Fi1

Zi⊃− Fi2 | i = 1 . . . n}; F01

Z0⊃− F02.

Output: true or false. (meaning I |= F01
Z⊃− F02 or not.)

Method:

var P1, . . . , Pk : set of attributes

{ one for each left hand side of each fd in any fsi (0 . . . n) }
change : boolean

i, j : integer
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begin

for j := 1 to k do

Pj := Xj
F01 { saturation for F01 }

od

repeat

change := false

for j := 0 to k do

for i := 0 to k do

if Xj ⊆ Pi
then

if Pj ̸⊂ Pi
then

begin

Pi := Pi ∪ Pj
change := true

end

od

od

for i := 1 to n do

if for all Xj→ Yj of Fi1 Yj ⊆ Pj
then

if for some Xj→ Yj of Fi2 Yj ̸⊂ Pi
then

begin

Pi := Pi ∪ Zj

change := true

end

od

until change = false

if for all Xj→ Yj of F02 Yj ⊆ Pj
then

return(true)

else

return(false)

end



7.2. The Implication Problem for fsi’s and afs’ 147

The correctness of Algorithm 7.2 can be proved exactly as for cfd’s. The

time-complexity is something like O(n3r2), where r = ♯Ω and n = the

number of fd’s in the input.

Using Theorem 7.1 and 7.4 one can easily prove the following membership

algorithm for afs’ (considering the presence of fsi’s):

Algorithm 7.3 Membership Detection for afs’ with fsi’s

Input: I,A, a set of fsi’s and a set of afs, not in conflict; \\FZ an afs.

Output: true or false

Method:

var IZ : set of fsi’s := Ø

AZ : set of afs’ := Ø

begin

for each Fi1

Zi⊃− Fi2 in I do

if I |= Fi1 or I |= Zi→ Z

then

IZ := IZ ∪ Fi1

Zi⊃− Fi2
od

for each \\FjZj
in A do

if IZ ∪ F |= Fj

then

return(true) { and exit }
od

return(false) { only reached if for-loop is done }

Rule FSA2 shows the influence of afs’ on the implication problem for fsi’s:

Theorem 7.5 Let I ∪A be not in conflict. I ∪A |= F1
Z⊃− F2 iff IZ |=

F1
Z⊃− F2 or IZ ∪AZ |= \\F1Z .

Proof The if part is trivial (using FSA2 if IZ ∪AZ |= \\F1Z ).

For the only-if-part, assume that IZ ̸|= F1
Z⊃− F2 and IZ ∪ AZ ̸|= \\F1Z .

By the proof of Theorem 7.4 IZ ∪ AZ ∪ F1 is not in conflict. Hence by

Lemma 7.7 there exists an instance in which I ∪ A holds and in which

F1
Z⊃− F2 does not hold. Hence I ∪A ̸|= F1

Z⊃− F2.

An immediate consequence of the proof of the above theorem is:
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Corollary 7.4 The rules F1 . . . F3, FS1 . . . FS5 and FSA1 . . . FSA4 are

complete for the inference of fsi’s from a set of fsi’s and afs’.

A membership algorithm for fsi’s (considering the presence of afs’) is easily

deduced:

Algorithm 7.4 Membership Detection for fsi’s with afs’

Input: I,A, a set of fsi’s and a set of afs, not in conflict; F1
Z⊃− F2 an

fdi.

Output: true or false

Method:

if I |= F1
Z⊃− F2

then

return(true) { and exit }
if I ∪A |= \\F1Z

then

return(true) { and exit }
else

return(false)

Algorithms 7.3 and 7.4 both take O(n4r2 + n3r2m) time, where n is the

number of fd’s that occur in the fsi’s of of I, m is the number of fd’s that

occur in the afs’ of A and r = ♯Ω. This time-complexity is actually the

time needed for calculating IZ and AZ , and is based on a membership

algorithm for FSAT which takes O(n3r2) time.

7.3 The Inheritance of fsi’s and afs’

For the (further) decomposition of the subschemes that result from a hor-

izontal decomposition step, we need to know the fsi’s and afs’ that hold in

the subschemes. This inheritance problem is very similar to that for fdi’s

and afd’s.

Notation 7.1 In the sequel we always treat the horizontal decomposition

of a schemeR = (Ω, I∪A, according to F1
Z⊃− F2 ∈ I, into the subschemes

R1 = σF1Z
(R) = (Ω, I1 ∪ A1), and R2 = σ\\F1Z

(R) = (Ω, I2 ∪ A2). We
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assume that I ∪ A is not in conflict, and also that I ∪ A ̸|= F1 and

I ∪ A ̸|= \\F1Z (otherwise R1 resp. R2 would always be empty). We only

require I1∪A1 and I2∪A2 to be generating for the sets of all dependencies

which hold in R1 and R2.

Since fd’s cannot be violated by taking a selection of a relation, Remark 4.3

also applies if the decompositions are based on fsi’s instead of cfd’s. This

means that all the fd’s which hold in R also hold in R1 and R2.

The inclusions of Lemma 6.8 are easily translated into the following inclu-

sions for fsi’s and afs’:

Lemma 7.9 Using Notation 7.1 we have:

• IZ ∪ F1 ⊆ I1 ⊆ {F ′
1

Z ′
⊃− F ′

2 | I ∪A ∪ F1 |= F ′
1

Z ′
⊃− F ′

2}.

• IZ ⊆ I2 ⊆ {F ′
1

Z ′
⊃− F ′

2 | I ∪A ∪ \\F1Z |= F ′
1

Z ′
⊃− F ′

2}.
• AZ ⊆ A1 ⊆ {\\F ′

Z ′ | I ∪A ∪ F1 |= \\F ′
Z ′}.

• AZ ∪ \\F1Z ⊆ A2 ⊆ {\\F ′
Z ′ | I ∪A ∪ \\F1Z |= \\F ′

Z ′}.

The proof of the inheritance of fsi’s and afs’ relies on the construction of

Lemma 7.7, which has already been used to solve the implication problem.

Theorem 7.6 Using Notation 7.1, an fsi or afs must hold in R1 (resp.

R2) iff it is a consequence of IZ ∪AZ ∪ F1 (resp. IZ ∪AZ ∪ \\F1Z).

Proof From Lemma 7.9 it follows that (IZ ∪AZ ∪ F1)
∗ ⊆ (I1 ∪A1)

∗ ⊆
(I ∪A ∪ F1)

∗ and also that (IZ ∪AZ ∪ \\F1Z )
∗ ⊆ (I2 ∪A2)

∗ ⊆ (I ∪A ∪ \\F1Z )
∗.

We prove that the first inclusions are equalities.

Let I ∪A ∪ F1 |= \\F ′
Z ′ but IZ ∪AZ ∪ F1 ̸|= \\F ′

Z ′. We prove that \\F ′
Z ′ does

not hold in R1.

IZ ∪AZ ∪F1 ̸|= \\F ′
Z ′ implies that IZ ∪AZ ∪F1 ∪F ′

1 is not in conflict, by

the proof of Theorem 7.4. By the proof of Lemma 7.7 one can construct

an instance R in which I ∪ A holds but in which \\F ′
Z ′ does not hold.

One starts with r1 = Arm(FSATIZ∪F1
(F ′)) this time, and adds copies

of Arm(FSATI(Ø,Ø )) to obtain r. From the construction, used in the

proof of Lemma 7.7 one can easily see that r1 = σF1Z
(r), since the copies

of Arm(FSATI(Ø,Ø )) have \\F1Z and have different Z-values than those

occurring in r1. Hence we obtain an instance in which I ∪ A holds, and

such that \\F ′
Z ′ does not hold in r1. Hence \\F ′

Z ′ ̸∈ (I1 ∪A1)
∗.
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The proof of the other three cases (an fsi in R1, an afs in R2 and an fsi

in R2) is similar, and also similar to the proof for cfd’s and ad’s, and

therefore left to the reader.

From Theorem 7.6 one can easily deduce an algorithm which calculates

the inherited dependencies in the same time as the membership algorithm.

Hence this also is the time-complexity of the following algorithm:

Algorithm 7.5 A Horizontal Decomposition Step with fsi’s and afs’

Input: R = (Ω, I ∪ A) and an fsi F1
Z⊃− F2 ∈ I. I ∪A is assumed not

to be in conflict, I ∪A ̸|= F1 and I ∪A ̸|= \\FZ .

Output: An ordered pair of schemes (R1 = (Ω, I1 ∪ A1), R2 = (Ω, I2 ∪
A2)), being the decomposition of R according to F1

Z⊃− F2.

Method:

var IZ , IZ1
, IZ2

: set of fsi’s := Ø

AZ : set of afs’ := Ø

begin

for each Fi1

Zi⊃− Fi2 in I do

if I |= Fi1 or I |= Zi→ Z or F1 |= F2

then

IZ := IZ ∪ Fi1

Zi⊃− Fi2
od

for each \\FjZj
in A do

if I |= Zj→ Z

then

AZ := AZ ∪ \\FjZj
od

for each Fi1

Zi⊃− Fi2 in IZ do

if IZ ∪ F1 ∪ F2 ̸|= Fi1 and IZ ∪ F1 ∪ F2 ∪AZ ̸|= \\Fi1Zi
then

IZ1
:= IZ1

∪ Fi1

Zi⊃− Fi2
od

for each Fi1

Zi⊃− Fi2 in IZ do

if IZ ̸|= Fi1 and IZ ∪ \\F1 ∪AZ ̸|= \\Fi1Zi
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then

IZ2
:= IZ2

∪ Fi1

Zi⊃− Fi2
od

return(R1 = (Ω, IZ1
∪ F1 ∪ F1 ∪AZ) , R2 = (Ω, IZ2

∪AZ ∪ \\F1Z ))

end

7.4 The “FSI” Normal Form

In this section we illustrate an algorithm for horizontal decomposition

of a relation scheme, according to its fsi’s. The algorithm decomposes

the scheme (and subschemes) until no subscheme can be decomposed any

further. This is formalized by defining the following normal form:

Definition 7.8 A scheme R = (Ω, I ∪ A) is said to be in FSI-Normal

Form, (FSINF) iff for all F1
Z⊃− F2 ∈ I either I |= F1 or I ∪A |= \\F1Z .

A decomposition (R1, . . . , Rn) is in FSINF iff all the Ri, i = 1 . . . n are in

FSINF.

If only trivial fsi’s are given the horizontal decomposition into FSINF gen-

erates the inherited decomposition into HNF. If all fsi’s are cfd’s, the hor-

izontal decomposition into CNF (Conditional Normal Form) is obtained.

If all fsi’s are ifd’s, the horizontal decomposition into INF is obtained. If

all fsi’s are fdi’s, the horizontal decomposition into FDINF is obtained.

So the decomposition using fdi’s generalizes all previous decompositions.

(We could also create “clean” decompositions using fsi’s).

To illustrate the horizontal decomposition into FSINF, we modify Exam-

ple 2.1 once more:

Example 7.1 Recall Example 2.1. In Section 7.1 we described the fol-

lowing fsi for STAFF :

{div dep→ job, div emp→ job, div man→ job}
div⊃− {div emp→ dep sal, div man→ dep}

In addition to this fsi, we also consider an fdi of Example 6.1: emp div→
job man dep

div⊃− emp div→ sal. The other fdi’s are combined in our fsi.
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The meaning of the job attribute has changed in this example: since we

consider the divisions in which each department has only one job as the

“big” divisions, the job must actually belong to the department, and not

to the employees. Otherwise, we would not have any “large” divisions in

any real company, since every department normally has a manager and

some other employees like secretaries. So the fd dev dep → job would

never be satisfied.

Figure 7.1 shows a decomposition tree for the decomposition of STAFF

into FSINF. The constraints that are shown are not exactly as generated

by the decomposition algorithm.

We do not decompose the instance given in previous chapters, since these

instances do not correspond to the new meaning of the attribute job.
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STAFF
{div dep→ job, div emp→ job, div man→ job}

div⊃− {div emp→ dep sal, div man→ dep}

emp div→ job man dep
div⊃− emp div→ sal

❄
{div dep→ job, div emp→ job, div man→ job}

div⊃− {div emp→ dep sal, div man→ dep}

✬

✫

✩

✪✟✟✟✟✙
❍❍❍❍❥

STAFF1
div dep→ job

emp div→ job dep sal
div man→ job dep

emp div→ job man dep
div⊃− emp div→ sal

STAFF2
\\Fdiv where F = {div dep→ job,
div emp→ job, div man→ job}

❄

emp div→ job man dep
div⊃− emp div→ sal

✓
✒

✏
✑✟✟✟✟✙

❍❍❍❍❥

STAFF11
div dep→ job
emp div→ Ω

div man→ job dep

STAFF12
div dep→ job

emp div→ job dep sal
div man→ job dep

emp div ̸̸−div→ man

Figure 7.1: A decomposition tree for STAFF , into FSINF.
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Chapter 8

The Update Problem

In this chapter we briefly discuss the effect of the horizontal decomposition

on the problem of updating relations. This effect is negative of course,

since the creation or removal of exceptions causes data to move from one

subrelation to another, whereas the update in one big relation does not

require this. Furthermore, depending on the implementation of instances,

even just scanning for an item goes faster in one relation than in several

relations (with the one relation as union), unless multiple processors are

working in parallel.

However, the horizontal decomposition does allow an improvement in

update-efficiency, for two reasons: the subrelations can be decomposed

vertically, using the fd’s, generated by the horizontal decomposition, and

if the update algorithm is smart enough, the subrelations can be updated

in parallel.

In this chapter we shall ignore the benefit of both the vertical decompo-

sition and parallelism, when calculating the time-complexity. However,

we shall develop a new normal form which allows an increased amount

of parallelism in the update algorithm. Since this normal form is rather

restrictive we show how to maximize the number of fd’s that can be gen-

erated from the goals. The update-study is based on the decomposition

using goals, so we do not consider cfd’s, ifd’s, fdi’s and afs’.

This chapter covers [17]. It is not meant as an exhaustive study on how

to optimize updating using horizontal decompositions, but it shows some

general strategies that can be used in actual implementations.

155
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8.1 The update algorithm

Before we present the complicated update algorithm, we first discuss an

intuitive way to solve the update problem, using the decomposition tree for

the relation scheme. We only consider insertions and deletions. Modifica-

tions can be (artificially) converted to a deletion followed by an insertion.

We concentrate on the decomposition of an abstract relation scheme R,

shown in Figure 8.1.

R

❄

X→? Y
✓
✒

✏
✑✘✘✘✘✘✘✘✘✘✘✾

❳❳❳❳❳❳❳❳❳❳③
R2

❄

X2→? Y2
✓
✒

✏
✑

✑
✑

✑✑✰

◗
◗
◗◗9

R1

❄

X1→? Y1
✓
✒

✏
✑

✑
✑

✑✑✰

◗
◗
◗◗9

R22

❄

X22→? Y22
✓
✒

✏
✑

✁
✁✁☛

❆
❆❆❯

R21

❄

X21→? Y21
✓
✒

✏
✑

✁
✁✁☛

❆
❆❆❯

R12

❄

X12→? Y12
✓
✒

✏
✑

✁
✁✁☛

❆
❆❆❯

R11

❄

X11→? Y11
✓
✒

✏
✑

✁
✁✁☛

❆
❆❆❯

R222R221R212R211R122R121R112R111

Figure 8.1: Decomposition of an abstract relation.

If a tuple t1 has to be added to r (which is decomposed using X→? Y ) it

is possible that this insertion creates an exception to X→ Y . This means

that there exist tuples t2 . . . tk (for some k) in r1 with the same X-value

as t1, but with another Y -value. These k tuples plus the new one form an

exception to X→ Y and hence belong in r2. This means that the k tuples

have to be deleted from r1 and inserted into r2. Let us forget about that

insertion into r2 for a moment and concentrate on the deletion from r1.

Deleting the k tuples from r1 can be easily done one by one. (We can

use a procedure for inserting or deleting a tuple recursively.) r1 may be
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decomposed by X1→? Y1 into r11 and r12. Each time a tuple is deleted

from r1 this may cause an exception to X1→ Y1 to disappear, causing m

tuples to move from r12 to r11 (for some m). However, a tuple moving

from r12 to r11 may be removed from r11 later on, when removing the

next of the k tuples from r1.

One can easily prove that an update algorithm, based on the above sched-

ule, may cause many tuples to move between many subrelations, before

they finally arrive in the right subrelation. In fact, a tuple may (in worst

case) visit all the “final” subrelations of the decomposition, a number

which is exponential in the number of goals. Hence this algorithm would

take exponential time, not in the number of tuples, but in the number of

goals.

We now present the algorithm for inserting and deleting tuples, which

does not require exponential time. The main property of the algorithm

is that the number of tuples that are moved between the subinstances is

minimal. In particular, every tuple is inserted or deleted at most once

at every “level” of the decomposition tree. (Since the depth of the tree

is at most the number of goals this is linear). This is especially useful

when the different subinstances are physically stored on different disks or

computers, causing the tuples that move from one subrelation to another

to move through a network. The “trivial” approach to the update-problem

(shown above) could well saturate the network hardware and software.

In the algorithm we use the abbreviation rtX for σX=t[X ](r), the selection

of r containing the tuples having t[X] as X-projection.

Algorithm 8.1 Insertion and deletion of a set of tuples.

Input: rins, rdel : sets of tuples to be inserted resp. deleted.

Output: No output; only an update to the instance is performed.

Method:

procedure adjust (r : (sub)instance {decomposed according to X→? Y };
rins, rdel : set of tuples {to be inserted resp. deleted});

var r1ins, r2ins, r1del, r2del : set of tuples := Ø

begin {adjust}
if r is a final subrelation



158 8. The Update Problem

then

r := r ∪ rins− rdel

else {r is decomposed acc. to X→? Y }
begin

for each t in rins do

if t[X] occurs in r2
then

if X ̸̸→ Y holds in r2 ∪ rinstX − rdeltX

then

r2ins := r2ins ∪ rinstX − rdeltX

else

begin

r2del := r2del ∪ r2
tX

r1ins := r1ins ∪ r
tX
2 ∪ rinstX − rdeltX

end

else {t[X] does not occur in r2}
if X→ Y holds in r1 ∪ rinstX − rdeltX

then

r1ins := r1ins ∪ rinstX − rdeltX

else

begin

r1del := r1del ∪ r
tX
1

r2ins := r2ins ∪ rtX1 ∪ rinstX − rdeltX

end

rins := rins− rinstX

rdel := rdel − rdeltX

od

for each t in rdel do

if t[X] occurs in r2
then

if X ̸̸→ Y holds in r2 ∪ r2ins
tX − rdeltX

then

r2del := r2del ∪ rdeltX

else

begin
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r2del := r2del ∪ r
tX
2

r1ins := r1ins ∪ r
tX
2 − rdeltX

end

else

r1del := r1del ∪ rdeltX

rdel := rdel − rdeltX

od

adjust(r1, r1ins, r1del)

adjust(r2, r2ins, r2del)

end

end; {adjust}

Theorem 8.1 Algorithm 8.1 correctly performs the insertions and dele-

tions, in O(m2nr) time, where m is the number of tuples (♯r + ♯rins +

♯rdel), n is the number of goals (♯G) and r is the number of attributes

(♯Ω).

Proof The correctness of Algorithm 8.1 is easy to prove after the fol-

lowing observation: If t has to be inserted or deleted, then there are

4 possibilities after the part of the update, concerning all tuples (of rins

and rdel) with the same X-value as t:

• t[X] did occur in r1 before the update (hence X → Y did hold for

this X-value) and X→ Y still holds for this X-value after the update.

Then the update is performed in r1.

• t[X] did occur in r1 before the update but after the update X → Y

does not hold any more for this X-value, after the update. Then the

tuples with this X-value must be moved to r2.

• t[X] did occur in r2 before the update (hence X ̸̸→ Y did hold for this

X-value) and X ̸̸→ Y still holds for this X=value after the update.

Then the update is performed in r2.

• t[X] did occur in r2 before the update but after the update X ̸̸→ Y

does not hold any more for this X-value, after the update. Then the

tuples with this X-value must be moved to r1.

For the time-complexity we first estimate the time needed to perform the

non-recursive actions which are performed in the algorithm. It is easy to
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see that, if the tuples are stored in a reasonable way, all operations like “if

X→ Y holds in r2 ∪ rinstX − rdeltX” can be performed in O(mr) time.

It remains to show how much time is involved in the “for each” loops and

in the recursive calls to the procedure adjust. It is clear that the body

of the for-loops for r is executed at most m times. Now assume that

the insertions and deletions in r cause m1 ≤ m tuples to move between

r1 and r2. Since these tuples are deleted from r1 (or r2) and inserted

into r2 (resp. r1) they cannot be moved between r11 and r12 and/or

r21 and r22. Hence if m2 is the number of tuples moved between r11
and r12 or r21 and r22 we have that m1 + m2 ≤ m. We can proceed

this argument by induction, obtaining numbers m1,m2, . . .mn, with the

property m1 +m2 + . . .+mn ≤ m. The update stops at level n since the

decomposition cannot be “deeper” than the number of goals, if we assume

that no goal may be used twice in the same branch of the decomposition

tree, which is guaranteed for the decompositions of Chapter 3 (both for

CNF and for the inherited decomposition into HNF.) The total number

of elements that cause execution of the body of a for-loop is at most 2

times the number of tuples that have to move between subinstances (once

for deleting them somewhere and once for inserting them somewhere else)

multiplied by the number of levels they go through (which is at most n).

Hence the number of elements in all loops (on all levels) is O(nm), which

means that the time-complexity of the entire algorithm is O(m2nr).

Looking at the time-complexity, Algorithm 8.1 (although polynomial) may

not seem to be efficient, since the square of the number of tuples rapidly

becomes a very large number. However, this is not only a “very”-worst

case time-complexity and it also does not take into account any possible

optimization for verifying fd’s, or for finding tuples in an instance. It also

does not consider vertical decompositions which can be applied to the final

subrelations.

Note also that although Algorithm 8.1 is not linear in the number of tuples,

the number of tuples that move between subinstances still is linear. This

becomes very important if the subinstances are located in different sites of

a computer network, since this is the number of tuples that goes through

the network.
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8.2 Normal Forms for Updating in Parallel

In this section we discuss how Algorithm 8.1 can be improved by updating

the subinstances in parallel, as much as possible. This may not lead to an

improvement of the worst-case time-complexity, but it certainly will lead

to a better “average” update-performance, especially if the subinstances

are distributed among different storage media, or even different computers.

The bottleneck of Algorithm 8.1 is that the sets r1ins, r1del, r2ins and

r2del are calculated completely before the procedure adjust is called to

update r1 and r2. It would be much more efficient if some updating of

r1 and r2 could be done as soon as an X-complete subset of the tuples

that have to move between r1 and r2 is determined. While this partial

update is completed in the subinstances the next X-complete set can be

calculated.

However, the updating process of r1 (which is decomposed according to say

X1→? Y1) can only start if an X1-complete set of tuples that has to move

between r11 and r12 is calculated (otherwise we may get an exponential

algorithm again). And since there is no relationship between X and X1

in general, no such X1-complete set of tuples can be found before r1ins

and r1del are completely calculated.

The following definition puts a restriction on the decomposition steps that

are allowed (i. e. on the goals that can be used), such that the subinstances

R1 and R2 can be partially updated while the update of R is still not

calculated completely.

Definition 8.1 Let the (sub)scheme R have a set G of goals, and let

X→? Y ∈ G be such that neither X→ Y not X ̸̸→ Y holds in R.

Decomposing R according to X→? Y is called a very safe decomposition

step if for all goals T→? U of G for which T → U or T ̸̸→ U (already) holds

in R, the fd T→ X also holds in R.

The goal X→? Y is then called a very safe goal for R.

From Theorem 3.3 and Definition 8.1 we conclude that if a subscheme

Ri...j is decomposed according to a very safe goal, then all fd’s or ad’s

that correspond to goals that have been used earlier in the decomposition
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(or that hold in R already) are preserved. The condition for a goal to be

very safe is a little stronger than the definition of a “safe goal” of [11].

Definition 8.2 A (sub)scheme R is said to be in Very Safe Normal Form

(VSNF) if no goal of G is very safe for R.

A decomposition R1...1 . . . R2...2 is said to be in Very Safe Normal Form if

it is obtained by very safe decomposition steps, and if all final subschemes

are in VSNF.

Note that also for the VSNF we have the property that the depth of the

decomposition tree is at most the number of goals.

If we have a kind of “lexicographic” ordering in the subinstances, first

according the last X that is used, then the previous one etc., then the

subinstances can be updated in parallel as follows:

Recall Figure 8.1. The tuples in r111 and r112 are first sorted on their

X11-value, then on their X1-value, and finally on their X-value. This is

possible in a very safe decomposition sinceX→ X1 holds in R, R1 and R11

and X1→ X11 holds in R1 and R11. Since the tuples are sorted on their

X11-value first, the first X11-value that is scanned forms an X11-complete

set of tuples as soon as a second X11-value occurs. This X11-complete set

of tuples is also X1-complete and X-complete, because of X→ X1→ X11.

Hence the updating procedure can continue with that X-complete set of

tuples, before rins and rdel are calculated completely.

The main problem with the VSNF is that the condition for a decompo-

sition to be in VSNF is rather strong, i. e. a number of goals may not be

used for decomposition. The order in which the goals of G are used is very

important. Using the goals in a different order may produce a different

number of subrelations. Therefore we introduce an optimization strategy,

which tries to maximize the number of goals that can be used. Since we

are mainly interested in the leftmost part of a decomposition tree, i. e. the

main part without the exceptions, we emphasize our optimization strategy

on that part, and we do not care about how many goals are actually used,

but for how many goals does the corresponding fd hold in the leftmost

subscheme.
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This problem is similar to a well known class of problems, called NP

(for nondeterministic polynomial). One can nondeterministicly choose the

“optimal” order on the goals, which produces the largest number of fd’s.

Many problems in NP are called NP-complete, meaning that all problems

in NP can be reduced to such NP-complete problem in polynomial time. It

is generally accepted that the NP-complete problems cannot be solved in

(deterministic) polynomial time (although no one has been able to prove

that yet). Early attempts to reduce some NP-complete problems to the

optimization problem for the horizontal decomposition have led to the

conclusion that this is not an NP-complete problem. In the sequel we

develop a polynomial-time solution for the optimization problem.

Definition 8.3 A very safe decomposition of a scheme R is said to be an

Optimal Decomposition if the number of goals for which the corresponding

fd holds in the “leftmost branch” of the decomposition tree is maximal,

and if the same property holds in all its subtrees.

The decomposition is then said to be in the Optimal Normal Form (ONF).

The optimization problem then is: given a set {X1→? Y1, . . . , Xn→? Yn} of n

goals, and a set F of fd’s, find a maximal sequence Xi1→? Yi1 . . . Xik→? Yik
such that

1. all ij ̸= il if j ̸= l.

2. for all j holds: F ∪ {Xi1→ Yi1, . . . , Xij → Yij} |= Xij → Xij+1
.

Calculating an Optimal Decomposition takes exponential time, since the

generated decomposition may have 2n subschemes. However, calculating

only the leftmost branch of a decomposition tree takes polynomial time,

for a very safe decomposition, or any of the normal forms of Chapter 3.

We show that the optimization problem (for one branch of the tree only)

can also be solved in polynomial time.

In the sequel we shall neglect the presence of a set F ∪A of dependencies,

to keep lemmas readable.

Lemma 8.1 Let V = {X1, . . . , Xn}, A = {Xi → Xj | F ′ = {X1 →
Y1, . . . , Xn→ Yn} |= Xi→ Xj and i ̸= j}. The directed graph G0 = (V,A)

can be constructed in polynomial time.
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Proof This is obvious since only O(n2) fd-membership tests have to be

executed.

The figure below shows part of an example of such a directed graph. A

number of “transitive” arcs have been omitted, to keep the figure readable.

X1
✲X2

✟✟✟✟✯

❍❍❍❍❥

X3
✟✟✟✟✯

❍❍❍❍❥

X4
✲

❍❍❍❍❥
X5

✟✟✟✟✙
X6

✻

X7

X8
✟✟✟✟✯

✲X9✛ ✲X10
✄
✄
✄
✄
✄
✄
✄
✄✄✗

✲ X11

We cannot use this graph for finding the longest path immediately, since

condition 2 of the update problem says that not F ′ but only the already

used goals may induce the fd’s Xi→ Xj. Therefore we remove the “im-

possible” arcs in an inductive way.

Lemma 8.2 The directed graph G is defined as the fixpoint of the follow-

ing inductively constructed series of graphs:

We start with G0.

Let Xi→ Xj be an arc of Gp. Find for each Xi all the Xk for which an

Xk→ Xi is an arc of Gp. If the fd’s Xk→ Yk united with Xi→ Yi imply

Xi→ Xj then Xi→ Xj is an arc of Gp+1 else it is not.

The directed graph G can be generated in polynomial time.

Proof The inductive process stops after at most n2 steps, since each

graph must contain at least one arc less than the previous graph, and the

graph G0 contains at most n2 arcs. Furthermore, every step requires only

O(n) fd-membership tests.

The directed graph, generated by Lemmas 8.1 and 8.2 may have some

cycles, indicated in the example graph above. We first show how to remove

those cycles.

Lemma 8.3 Let F1 ⊆ F ′ be the set of fd’s corresponding to the X-es of a

cycle of the graph G, not contained in another cycle. Then for all Xi→ Xj

in that cycle F1 |= Xi→ Xj.
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Proof Suppose that for some Xi→ Xj in the cycle we have that F1 ̸|=
Xi→ Xj, hence some fd Xl→ Yl of F ′ −F1 is needed in the deduction of

Xi→ Xj. Let F ′′ ⊆ F ′ be the minimal set of fd’s such that F ′′ |= Xi→ Xj.

Remark 3.1 implies that F ′′ − {Xl→ Yl} |= Xi→ Xl. Since F ′′ − {Xl→
Yl} |= Xi→ Xl some Xp→ Yp ∈ F ′′ − F1 is needed to deduce Xi→ Xl.

Hence F ′′ − {Xl → Yl} − {Xp→ Yp} |= Xi→ Xp. We can continue this

argument (by induction) to obtain an Xm → Ym ∈ F ′′ − F1 such that

F1 |= Xi→ Xm, which implies that Xi→ Xm is an arc of G. Since Xm→
Ym ∈ F ′′ we know that Xm→ Ym is needed to deduce Xi→ Xj (because

F ′′ is minimal), hence Xm → Xi must be an arc of G too. (Otherwise

G would not be the fixpoint of its construction.) Since Xi → Xm and

Xm→ Xi are arcs of G, and Xm is not in the cycle (since Xm→ Ym ̸∈ F1)

the cycle is contained in a bigger cycle (by inserting Xm in the cycle), a

contradiction.

Lemma 8.4 In a cycle there exists an order, i. e. a sequence Xi1 . . . Xil
such that for each j ∈ 1 . . . l − 1 {Xi1 → Yi1, . . . , Xij → Yij} |= Xij →
Xij+1

. This order can be calculated in polynomial time.

Proof Consider a cycle X1 . . . Xl. Let F1 = {X1 → Y1, . . . , Xl → Yl}.
Consider X1 → X2. F1 |= X1 → X2 (by Lemma 8.3). Let Xi → Yi be

needed in the deduction of X1→ X2, then (by Remark 3.1) F1 − {Xi→
Yi} |= Xi→ X1. For Xi→ X1 we can repeat this argument, and obtain

an Xj → Yj such that F1 − {Xi → Yi} − {Xj → Yj} |= Xj → Xi. We

can repeat this process until we obtain an Xp→ Yp which (all by itself)

induces Xq→ Xp (for the q of the previous step). The order, constructed

by this inductive process (which starts with Xp and ends with X1) does

not necessarily include all X − es of F1 yet: some fd’s may not be used.

These can be added to the end of the order (since they are implied by

the other fd’s). The order thus obtained satisfies the lemma. It is obvious

that this construction takes only polynomial time.

Since we now have shown that all elements of a cycle are equivalent we can

construct a graph G1, in which all cycles are replaced by a single vertex,

and in which every vertex has a “weight”, which is the number of vertices

of G it represents.
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Every (directed) path in G1 (not contained in a longer path) represents

a possible (leftmost branch of a) decomposition tree. Now all we have

to do is choose the path with the highest weight. It is well known that

this can be done in polynomial time (for an acyclic directed graph). This

completes the proof of the main theorem:

Theorem 8.2 The optimization problem can be solved in polynomial time.

The picture below shows the graph for the example, given earlier in this

section.

X
(1)
1

✲X
(1)
2

✟✟✟✯

✲

X
(1)
3

✲X
(3)
4,5,6

✲X
(1)
7

X
(2)
8,9

✟✟✟✯

✲X
(1)
10

✟✟✟✯

✲X
(1)
11

The path with highest weight is X
(1)
1 → X

(1)
2 → X

(2)
8,9→ X

(3)
4,5,6→ X

(1)
7 .



Chapter 9

Further Investigations

The most obvious question is whether the horizontal decomposition theory,

presented in this thesis, can be extended to cover other constraints besides

fd’s. Several “candidate-classes” of constraints exist:

• multivalued dependencies (mvd’s) and join dependencies (jd’s).

For mvd’s one can easily define a horizontal decomposition, based on

X-complete sets:

The horizontal decomposition of r, according to X→?→? Y is the ordered

pair (r1 = σX→→Y (r), r2 = r − r1), where σX→→Y (r) is the largest

X-complete set of tuples for which X→→ Y holds.

This definition then leads to a new constraint: the amultivalued depen-

dency (amd) X ̸↛→ Y , with the obvious meaning. One can also easily

construct a strong Armstrong relation for mvd’s (cfr. Theorem 2.1),

and show that conflict can be easily detected (cfr. Theorem 2.3). Also,

the amd’s have no influence on the implication problem for mvd’s

(cfr. Theorem 2.2), as long as there is no conflict. The implication

problem for amd’s becomes more difficult, and we do not yet know if

Theorem 3.1 can be converted to mvd’s, i. e. we do not know whether

M ∪A |= X ̸↛→ Y iff M ∪A ∪ {X→→ Y } is in conflict.

An additional problem with mvd’s is that the inheritance problem has

an unpleasant solution: all mvd’s T →→ U with T ̸= X (or T ↛ X if

we also consider fd’s) are lost by decomposing R according to X→?→? Y .

Maybe the real reason for this failure of generalizing the horizontal

decomposition to mvd’s is that an mvd is in fact a special case of

a jd: X →→ Y is equivalent to the jd XY ◃▹ X(Ω − Y ). For a jd

167
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X1 ◃▹ X2 ◃▹ . . . ◃▹ Xn it is not at all obvious how to define the notion

of “exceptions”.

In Chapter 1 we already indicated that mvd’s and jd’s are constraints

on the structure of the database rather than on the data. Therefore

the presence of exceptions in the real world is an indication for a bad

database design.

• partition dependencies (pd’s). These constraints have been introduced

recently [9] as a new way of generalizing the concept of fd’s. A set X of

attributes defines a partition of an instance into itsX-values (X-unique

X-complete sets of tuples). On these partitions we have the “natural”

operators • and +. The fd X → Y is equivalent to X = X • Y .

A “general” pd is e = e′ where e and e′ are expressions (with sets

of attributes, •’s and +’s). The notion of an exception cannot be

easily generalized to “general” pd’s, but maybe some subclass (like

X = Y • Z) turns out to be useful. No research has been done on

exceptions to pd’s yet.

• inclusion dependencies (ind’s). An exception to an ind X ⊆ Y can

be easily defined as the set of tuples with an X-value which is no Y -

value. The horizontal decomposition then generates a “generalized”

ind R1[X] ⊆ R1[Y ] ∪ R2[Y ], and an exclusion dependency (exd) [5]

R2[X] || R1[Y ] ∪ R2[Y ] (meaning that R2[X] ∩ (R1[Y ] ∪R2[Y ]) = Ø).

It seems that most results on ind’s and exd’s can be generalized to de-

pendencies between unions of relations, but this requires further study.

Also, the decomposition for ind’s makes the fd’s more complicated:

X→ Y in R becomes R1 ∪R2 : X→ Y . We could also generalize ad’s

to R1 ∪ R2 : X ̸̸→ Y , which would prevent ad’s from being lost by the

horizontal decomposition. This matter still requires further study, but

some negative results which are known about fd’s and ind’s already

indicate that one cannot expect a “nice” theory, with only decidability

results and polynomial algorithms.

Besides the theoretical generalization of the horizontal decomposition the-

ory to other constraints besides fd’s, some practical work needs to be

done concerning the implementation of the horizontal decomposition in

relational database machines. The theoretical advantage of the horizontal

decomposition is somewhat reduced by the more complex update algo-
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rithms and the increased number of relations that have to be accessed.

The overall result can only be measured with some “real world” databases.
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