
AHA! The Adaptive Hypermedia Architecture

Paul De Bra, Ad Aerts, Bart Berden, Barend de Lange, Brendan Rousseau,
Tomi Santic, David Smits, Natalia Stash

Department of Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands
+31 40 2472733

debra@win.tue.nl

ABSTRACT
AHA!, the “Adaptive Hypermedia Architecture”, was originally
developed to support an on-line course with some user guidance
through conditional (extra) explanations and conditional link
hiding. This paper describes the many extensions and tools that
have turned AHA! into a versatile adaptive hypermedia platform.
It also shows how AHA! can be used to add different adaptive
“features” to applications such as on-line courses, museum sites,
encyclopedia, etc. The architecture of AHA! is heavily inspired by
the AHAM reference model [6].

ACM Categories and Subject Descriptions
H.5.2 (user interfaces), H.5.4 (hypertext/hypermedia)

General Terms: Design, Experimentation, Human Factors

Keywords: Adaptive hypermedia, adaptive presentation,
adaptive navigation support, authoring support.

1. INTRODUCTION
After some initial experimental versions AHA! [7] was released as
version 1.0 in 2000 [5]. Compared to other adaptive systems like
Interbook [2], KBS-Hyperbook [8,10] and many others AHA!
excelled in the area of simplicity. AHA! has since evolved into a
much more powerful system (version 2.0, and soon 3.0), but new
versions maintain that basic simplicity. The adaptive hypermedia
methods and techniques present in AHA! can be found in
Brusilovsky’s taxonomy [1]:

• A user model based on concepts: Each time you visit a page
in an AHA! application the name of the page is passed to the
adaptation engine which updates the user model. A user
model consists of concepts that have attributes. A typical
example of an AHA! action is that visiting a page may
increase a knowledge attribute for (the concept
corresponding to) that page. This knowledge update may
propagate to the knowledge attribute of other concepts,
perhaps corresponding to a section or chapter of a textbook.
In AHA! a concept can have arbitrarily many attributes of
types Boolean, integer or string.

Copyright is held by the author/owner(s).
HT’03, August 26–30, 2003, Nottingham, United Kingdom.
ACM 1-58113-704-4/03/0008.

• Adaptive link hiding or link annotation: The suitability of
link destinations (pages) is determined by an author-defined
requirement. This is a (Boolean) expression using arbitrary
user model values. The requirements can express the
common prerequisite relationships between concepts but can
be used for any other condition that can be expressed
through such a Boolean expression. When a page is
generated, links marked as conditional (using the link class
“conditional”) are displayed differently depending on the
suitability of the link destination. If the expression is true the
link is shown in blue (unvisited) or purple (visited), and
when the expression is false the link is shown in black, and
not underlined. This results in hiding the unsuitable or
undesired links. The color scheme can also be altered by the
end-user to make all links visible, in different colors.

• Conditional inclusion of fragments: Like for the links to
pages the author can also associate a requirement with
fragments in a page. This is done through an <if> tag, with
one or two fragments, enclosed by a <block> tag. If the
expression is true the first fragment is shown to the user,
otherwise the second (optional) fragment is shown. This can
be used to include prerequisite explanations, or any other
piece of content. In the upcoming AHA! version 3.0
fragments can be external objects, represented through the
<object> tag. Such objects can themselves also be associated
with concepts and accessing them triggers user model
updates just like for page accesses.

AHA! is delivered as Open Source software, written entirely in
Java, using Servlets. Several researchers in different countries
have used (different versions of) AHA! either for research projects
or for courses (or both) [4,9,11]. In this paper we mainly present
the features of AHA! version 2.0, but we do already indicate the
new developments that are leading towards version 3.0. Many
AHA! features are inspired by the AHAM reference model [6], by
functionality of other systems and by experience with (and
shortcomings of) AHA! in the past.

In Section 2 we describe the overall architecture of AHA!. This is
followed in Section 3 by a description of how the user’s
interaction with the system results in user model updates, through
the adaptation model. Section 4 briefly describes the adaptive
presentation and the link adaptation functionality. Section 5 deals
with the possibilities to keep parts of a presentation stable.
Section 6 introduces the authoring tools. In the final Section 7 we
provide an outlook into the future.

 Figure 1: Sketch of the architecture of AHA! Figure 2: Adaptive techniques used in AHA!

2. ARCHITECTURE OF AHA!
The overall architecture of AHA!, shown in Figure 1, shows that
AHA! consists of Java servlets that serve pages from the local file
system or from external http servers. The servlets interact with a
combined domain/adaptation model DM/AM and with a user
model UM (in terms of AHAM [6]). A request for a page (passed
to a servlet by the webserver) triggers adaptation rules that
perform UM updates. When UM is updated the requested page is
parsed to perform the conditional inclusion of fragments. That
inclusion is based on the new state of UM. Links on the page (or
in included fragments) may be “conditional”, meaning that their
presentation depends on a “suitability” requirement that is part of
the domain/adaptation model. Figure 2 shows the types of
adaptation performed by AHA!.

AHA! stores DM/AM and UM (of all users) either as XML files
or in a mySQL database. The choice between these two is made
by the Manager who configures AHA!, chooses installation
directory, path names, etc., and who creates accounts for authors.
The configuration is done entirely through a web-based forms
interface. AHA! comes with installation instructions for its use
with the Open Source Tomcat server.

Authors typically create the domain/adaptation model through an
authoring tool. The Concept Editor offers low-level access to the
adaptation model’s rules, whereas the Graph Author is used to
define concept relationships such as prerequisites. Both tools are
described in Section 6. Alternative authoring tools are being
developed. Recently, a compiler from Interbook [3] to AHA! was
developed, along with an AHA! addition called the layout model,
to create presentations that consist of multiple windows and
frames. Another experimental authoring tool uses a scripting
language to describe pages and the possible navigation paths [9].
It was defined as part of an attempt to combine (parts of) AHA!
with Auld Linky, an Open Hypermedia system developed at the
University of Southampton.

3. DM/AM AND UM IN AHA!
AHA! applications mainly consist of a set of concepts, some of
which are linked to pages or objects (or fragments). Concepts can
be used to represent topics of the application domain, e.g. subjects
to be studied in a course, or artists, art styles, or art pieces (like
paintings) in a museum. In AHA! the author of an application can
associate any number of (named) attributes with a concept. Some

attributes have a meaning for the system, like access (a Boolean
attribute that temporarily becomes true when a page is accessed),
some have meaning for the author (and user), like knowledge or
interest, and some have meaning for both, like visited
(determining the link color). Since AHA! uses an overlay user
model, all attributes of concepts in DM/AM also appear in UM.

The adaptation rules define how the user model is updated. When
the user accesses a page (or an object included in a page) the rules
associated with the access attribute are triggered. Each rule
consists of two parts: a condition and an action. The condition is
expressed as a Boolean expression using attributes of concepts,
and the action consists of one or more assignments of values or
expressions to attributes of concepts. (The expressions can use
constants, attribute values, or even the amount by which the
triggering attribute was changed.) Optionally there can also be a
second action that is performed when the condition is false.

The actions of a triggered rule update some attributes of some
concepts. The author can indicate for every rule whether this
action triggers the rules associated with the updated concept-
attributes. It is thus easy to define that a page access increases the
knowledge of the concept associated with the page, and have that
knowledge update cause a knowledge update of a larger topic, like
a section of a textbook, and have that knowledge update in turn
cause a knowledge update of an even larger topic like a chapter.
Similarly, accessing a page that shows a painting in a museum can
cause an interest update for the painter, and that may cause an
interest update for the style of that painter, etc. The fact that these
adaptation rules are completely arbitrary illustrates the power of
the AHA! system, but at the same time also shows that it is
difficult for an author to predict the outcome of the rule execution.
It is even possible that the defined rules sometimes cause an
infinite loop in the rule execution. (AHA! does limit the rule
execution to avoid run-time errors in such a case.) In Section 6 we
briefly introduce the Graph Author tool that enables authoring
without the need to be familiar with the low level adaptation rules.

An aspect worth mentioning is the way in which AHA!
determines the suitability of a page. With each page (or concept)
AHA! associates a requirement expression. This expression is
evaluated when needed to determine the suitability of a page.
However, rather than evaluating the suitability when needed one
can also opt to use a suitability attribute, and just evaluate that

WWW server

User
(student)

Author

DM/AM
local

pages

Manager

Authoring tools

ConceptEditor
Graph Author

Java Applets

AHA! engine

Java servlets

DM - Domain Model
AM - Adaptation Model
UM - User Model

Pages from external
WWW servers

UM

not fulfilled

Conditional inclusion
of fragments

Link hiding or annotation

"desirability" of a page

good neutral bad

link colors

Adaptive navigation
(link level adaptation)

Adaptive presentation
(content level adaptation)

requirement
for fragment

fragment
included

fragment
not included

fulfilled

depends on

defines

Adaptation in AHA!

attribute in the expression. One can thus determine the suitability
of a page through adaptation rules.

Another aspect is the visited status of pages or objects. AHA! uses
a visited attribute to store this status. When a page or object is
accessed an adaptation rule can set the visited attribute. This is
done using a “standard” rule, normally created automatically by
the authoring tools. However, since it is just a user model attribute
of the concept one can create rules that manipulate this attribute in
a different way (e.g. marking previously visited pages as unvisited
for some purpose).

4. HOW AHA! PERFORMS ADAPTATION
Adaptation in AHA! is based on a number of attributes associated
with concepts, and stored in UM. We describe the adaptation
briefly because most of it is already explained above.
• When a page (or fragment) contains a link anchor, and the

link is marked as (being of class) conditional, the link can be
presented using one of three colors, called good, neutral and
bad, (see Figure 2), depending on the requirement
expression and visited attribute of the link destination (page).

• Content adaptation in AHA! uses the conditional inclusion of
fragments technique. There are two ways to use this
technique in AHA!: with embedded fragments or with
objects. Embedded fragments appear within a page, and are
included if an associated suitability expression evaluates to
true. A drawback of this technique is that it mixes a DM/AM
construct with the actual content pages. Also, the use of an
<if> tag for these fragments implies that AHA! pages are not
standard XHTML. Therefore it is better to use the newer
AHA! 3.0 feature of conditional inclusion of objects. In a
page the author includes <object> tags (a part of standard
XHTML), with objects of a special type “aha/text”. The
AHA! engine looks at the ID of the object, which is
considered as a concept from DM. The access event of that
concept is used to trigger the adaptation engine and perform
UM updates. An attribute can be associated with a casegroup
tag to select the resource (file) to be inserted in the page at
the position of the <object> tag. That fragment is called the
returnfragment. It is thus not only possible to conditionally
include “a” fragment, but also to choose which fragment to
include. Parsing of the page continues with the contents of
the fragment (if it is an XHTML file like the page itself). The
fragment may also contain an <object> tag, which again
triggers the adaptation engine. This process (which might run
into an infinite loop if the inclusion is recursive and badly
conditioned) continues until all fragments are considered for
inclusion and the end of the page is reached.

Other XML formats besides XHTML can be used in AHA! as
long as they have an <a> tag and an equivalent of the <object>
tag. SMIL has been used successfully in an experiment, using the
<ref> tag instead of <object>. AHA! can thus be used to augment
the limited adaptive functionality already foreseen in SMIL.

5. STABLE PRESENTATIONS
In a typical adaptive application each page is adapted to the
current UM state each time that page is visited. This may not be
the desired behavior according to some users. It may be unsettling
that an adaptive website does not always show the same
information on the same page.

For each page or object in AHA! 3.0 one can indicate the desired
stability of the presentation. Each page or object can be adapted in
four different ways:
• always adapted: this is the default behavior, in which the

page or object is always adapted to the current UM state.
• always stable: on the first access the page or object is

adapted to the UM state. On subsequent accesses the
presentation is identical to the first presentation (except for
the link colors based on the visited state, like users have
come to expect in web browsers).

• session stable: on the first access during a session the page or
object is adapted to the UM state. During the session the
presentation remains the same.

• expression stable: a stability expression is associated with
the page or object. As long as this expression remains true
the presentation is kept stable. When the expression becomes
false and the page or object is accessed again it is again
adapted to the current UM state.

In AHA! it is possible to include the same object multiple times
on a page (each time possibly resulting in a different fragment).
Defining stability for objects only would not allow such pages to
be presented in a stable way. Object stability and page stability are
therefore both included in AHA!. However, we expect that
situations with multiple instances of the same object on a page
will be rare.

6. AUTHORING TOOLS
In AHA! version 1.0 all authoring was done directly in XML files
for DM/AM and in HTML for the pages. Since AHA! version 2.0
(and thus also with the upcoming 3.0) the DM/AM structure has
become a lot more complicated: for each concept there are
arbitrarily many attributes. Each attribute can have condition-
action rules to update arbitrary attributes of arbitrary concepts. (In
AHA! version 3.0 there are even more features, like the casegroup
to choose fragments to include, stability parameters, etc.) Creating
AHA! applications without an authoring tool for DM/AM is no
longer feasible. Authoring for AHA! is currently facilitated in
three ways:
• The Concept Editor is a graphical, Java applet based tool to

define concepts and adaptation rules. It uses an (author-
defined) template to associate a predefined set of attributes
and adaptation rules with each newly created concept. It is a
low level tool in the sense that all adaptation rules between
concepts must be defined by the author. Many applications
have a number of constructs that appear frequently, e.g. the
knowledge propagation from page to section to chapter, or
the existence of prerequisite relationships. This leads to a lot
of repetitive work for the author.

• The Graph Author is also a graphical, Java applet based tool,
but it uses high level concept relationships. Again, when
concepts are created a set of attributes and adaptation rules is
generated. But this tool also has templates for different types
of concept relationships (also defined by the author).
Creating knowledge propagation, prerequisite relationships
or any other relationship is just a matter of drawing a graph
structure using this graphical tool. The translation from high-
level constructs to the low-level adaptation rules is done
automatically, based on the templates. Figure 3 shows a
screenshot of the Graph Author.

Figure 3: The Graph Author

• Instead of creating AHA!-specific tools it is possible to let

authors develop applications for other adaptive hypermedia
systems and translate them to AHA!. Given the fact that
AHA! offers a lot of (low-level) functionality this should be
possible for many systems. As part of the work on additions
to the presentation and layout possibilities of AHA! an
Interbook to AHA! compiler was developed [3]. It shows
that AHA! can not only emulate the adaptive behavior of
Interbook, it can even mimic the presentation quite closely.

7. CONCLUSIONS AND FUTURE WORK
AHA! has been extended in many ways in the past two years. This
paper has described the main features of the latest developments
(AHA! versions 2.0, the current version, Spring 2003, and 3.0,
upcoming for Fall 2003). The results form a web-based system
that:
• uses standard XHTML for pages and for included fragments,

thus enabling the use of off the shelf authoring tools;
extensions for XML-based languages such as SMIL are easy;

• has a rich user model, representing abstract concepts, pages
and fragments, with arbitrarily many attributes per concept,
as suggested by the AHAM reference model [6];

• offers a simple form of link adaptation, closely resembling
the behavior users expect in a browser environment;

• offers a powerful content-adaptation method, with (in
version 3.0) the ability to conditionally select objects to
include, and enabling the use of the same object on different
pages without redundant copies.

Feedback from real users will be the most important source of
inspiration for new developments. However, two important ideas
have already emerged:
• There is a need to enable adaptive hypermedia systems to

communicate with each other. This means access to each
others’ DM/AM as well as UM, through a common protocol.

• Adaptation has until now been based on the user’s browsing
behavior. Work is needed to also allow adaptation to aspects
of the user, such as cognitive style, and the user’s context,
such as device and network characteristics.

8. ACKNOWLEDGEMENT
The development of the AHA! system was supported by a grant of
the NLnet Foundation, through the “Adaptive Hypermedia for
All!” project (conveniently abbreviated to AHA!). Further
developments, including the communication or translation
between different adaptive hypermedia systems (exemplified by
[3]) are supported through the European Minerva project
ADAPT, reference number 101144-CP-1-2002-NL-MINERVA-
MPP.

9. REFERENCES
[1] Brusilovsky, P. Adaptive Hypermedia, User Modeling and

User-Adapted Interaction, Vol. 11, nr. 1−2, pp. 87−110,
Kluwer academic publishers, 2001.

[2] Brusilovsky, P., Eklund, J., and Schwarz, E. Web-based
education for all: A tool for developing adaptive courseware.
Proceedings of Seventh International World Wide Web
Conference, pp. 291-300, 14-18 April 1998.

[3] Brusilovsky, P., Santic, T., De Bra, P. A Flexible Layout
Model for a Web-Based Adaptive Hypermedia Architecture.
Proceedings of the AH2003 Workshop, TU/e CSN 03/04, pp.
77-86, Budapest, Hungary, May 2003.

[4] Cini, A., Valdeni de Lima, J. Adaptivity Conditions
Evaluation for the User of Hypermedia Presentations Built
with AHA!. Second International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems, Springer
Verlag, LNCS 2347, pp. 490-493, May 2002.

[5] De Bra, P., A. Aerts, G.J. Houben, and H. Wu. Making
General-Purpose Adaptive Hypermedia Work. Proceedings
of the AACE WebNet Conference, pp. 117−123, San
Antonio, Texas, 2000.

[6] De Bra, P., G.J. Houben, and H. Wu. AHAM: A Dexter-
based Reference Model for Adaptive Hypermedia.
Proceedings of the ACM Conference on Hypertext and
Hypermedia, pp. 147−156, Darmstadt, Germany, 1999.

[7] De Bra, P. and Calvi, L., AHA! An open Adaptive
Hypermedia Architecture. The New Review of Hypermedia
and Multimedia, vol. 4, pp. 115-139, Taylor Graham
Publishers, 1998.

[8] Henze, N. Open Adaptive Hypermedia: An approach to
adaptive information presentation on the Web. First
International Conference on Universal Access in Human-
Computer Interaction (UAHCI 2001), held jointly with HCI
International 2001, 5-10 August 2001, New Orleans,
Louisiana, USA.

[9] Millard, D., Davis, H., Weal, M., Aben, K., De Bra, P. AHA!
meets Auld Linky: Integrating Designed and Free-form
Hypertext Systems. Proceedings of the ACM Hypertext
Conference, Nottingham, UK, August 2003.

[10] Nejdl, W. and Wolpers, M. KBS Hyperbook -- A Data-
Driven Information System on the Web. WWW8
Conference, Toronto, May 1999.

[11] Romero, C., Ventura, S., De Bra, P., De Castro, C.
Discovering Prediction Rules in AHA! Courses. Proceedings
of the User Modeling Conference, Johnstown, Pennsylvania,
June 2003.

