
Sufficient Conditions for Well-behaved Adaptive
Hypermedia Systems

Hongjing Wu, Paul De Bra

Department of Computing Science
Eindhoven University of Technology

Eindhoven, the Netherlands
email: {hongjing,debra}@win.tue.nl

Abstract. We focus on well-behaved Adaptive Hypermedia Systems, which
means the adaptation engine that executes adaptation rules always terminates
and produces predictable (confluent) adaptation results. Unfortunately
termination and confluence are undecidable in general. In this paper we discuss
sufficient conditions to help authors to write adaptation rules that satisfy
termination and confluence.

Keywords: adaptive hypermedia, user modeling, production rules.

1. Introduction

Adaptive Hypermedia Systems (or AHS for short) provide automatically personalized
access to hypermedia information sources, most often in the form of Websites. Most
AHS provideadaptive navigation supportandadaptive content. The link structure or
the presentation of link anchors is different for every user. The actual content on
information pages is also different for every user. An overview of systems, methods
and techniques for adaptive hypermedia can be found in [B96]. We have developed a
reference model for the architecture of adaptive hypermedia applications: the
Adaptive HypermediaApplication Model (AHAM) [DHW99]. AHAM describes
AHS at an abstract level, using an architecture consisting of three parts:
• a domain model (DM) that describes how the information content of the

application is structured (using concepts and concept relationships).
• a fine-graineduser model(UM) that represents a user’s preferences, knowledge,

goals, navigation history and other relevant aspects.
• an adaptation model(AM) consisting ofadaptation rules. The rules define the

process of generating the adaptive presentation and of updating the user model.
This architecture provides a clear separation of concerns when developing an adaptive
hypermedia application.

The implementation part of AHS, calledadaptation engine(AE), is the software
that performs the adaptation (described by rules in AM).Design issues for a general-
purpose adaptation engine(AE) are discussed in earlier paper [WDD01]. We defined
a rule language for AHS, AHAM-CA and proposed a static analysis method to decide
if for a given DM, UM and AM the AE would alwaysterminateand if it would be
confluent(meaning that the system would generate predictable results). In this paper
we discuss how the (sufficient but not necessary) conditions that guarantee
terminationandconfluencecan be relaxed (while remaining sufficient).

2. The Adaptation Rule Language

For lack of space we will not give a complete specification of the syntax of our
(abstract) rule language, but illustrate it with an example. For details, see [WDD01].
A rule C→A in AHAM consists of a condition (C) and an action (A). While the
properties of the language are independent of the syntax that is used, we use an SQL-
like syntax for clarity. An example of an AHAM-CA rule is:

C: select C1.knowledge
where C1.knowledge≥ “known”

A: update C2.ready_to_read :=true
where prerequisite(C1, C2) and

not exists(selectC3

where prerequisite(C3, C2) and
C3.knowledge < “known”)

This is agenericrule, containing concept variables C1, C2, and C3. The language also
allows for (more or less)specificrules that use concepts instead of concept variables.
The example rule says that when the knowledge of concept C1 changes so that it
becomes at least “known” then all concepts C2 for which C1 was the last prerequisite
that was not yet “known” now become “ready_to_read”. In this rule language it is all
too easy to write rules that may cause infinite loops or unpredictable results. An
example of such a rule is:

C: selectC1.attr
where C1.attr > 0

A: update C2.attr := C2.attr + 1
where rel(C1, C2)

This example also shows that whether or not this rule generates an infinite loop
depends on whether the concept relationship “rel” has cycles.

3. Sufficient Conditions for Termination and Confluence in AHS

The AHAM-CA rule language is very powerful, but expressive power always has an
impact on system behavior. There is no implicit guarantee that the system is well-
behaved. We proposed a static analysis method for termination and confluence
[WDD01] for general cases in AHS; the analysis either tells us the rule set is
confluent and terminates, or that this can’t be determined. This section defines some
constraints on AHAM-CA rules that guarantee termination and confluence, while at
the same time retaining more freedom for the author to write propagation than the
sufficient conditions of [WDD01]. We first define some terms and functions that will
be used later on.

Definition 1: Ri may activate Rj if the execution of action Ai canchange the database
(DM and UM together) from a state in which condition Cj is false to a state in which
Cj is true. Ri may deactivate Rj if the execution of action Ai canchange the database
from a state in which Cj is true to a state in which Cj is false.

Definition 2: A rule setterminatesif the rules cannot activate each other indefinitely.

Definition 3: A rule execution stateS is a pair (d, RA), where d is a database state
(DM and UM) and RA ⊆ AM is a set of active rules.

Definition 4: A rule execution sequenceis a sequenceσ consisting of a series of rule
execution states linked by (executed) rules. A rule execution sequence iscompleteif
the last state is (d,∅), i.e., the last state has no active rules. A rule execution sequence
is valid if it represents a correct execution sequence: only active rules are executed,
and pairs of adjacent states properly represent the effect of executing the
corresponding rule; for details see [AHW95].

Definition 5: A rule set is confluent if, for every initial rule execution state S
(produced by an initial database state followed by a set of user modifications), every
valid and complete rule execution sequence beginning with S has the same final state.

Definition 6:
1. Let R: C→A. the functionnumfor the number of relationships used in thewhere

clause of A (A.where) (the exact definition is omitted because of limited space).
2. Let R: C→A
(a) S(R) = the set of attributes which are selected in C
(b) U(R) = the set of attributes to which values are assigned in A
(c) E(R) = the set of attributes used in the right-hand side of assignments in A
(d) A st-rule (start rule) is a rule that is triggered by external events or internally

generated events. Its action only updates the concept selected by its condition. It
describes the change of the values inside the same concept. St-rule represents a
set ofst-rules.

(e) A pr-rule (propagation rule) is a rule that propagates the changes of values to
different concepts through relationships between these concepts. It would be a
sign of bad design if rules propagate changes through means other than concept
relationships in AHS. Pr-rule represents a set ofpr-rules.

(f) Pri(R) is the number to represent the priority of the execution order of rule R.
(g) AM(rel)⊆Pr-rule is the set of rules which propagate their change “through” the

relationship type rel.

Now we study constraints that guarantee that the execution of a set of rules
terminates and is confluent, and that still give authors a certain expressive power to
write rules with propagation. The first few constraints show that a straightforward
approach leads to very strict constraints that do not give authors enough freedom.

Constraint 1: ∀Ri, Rj∈AM: S(Ri)∩U(Rj) = ∅.
This constraint means that rules are not allowed to trigger each other.

Theorem 1: A rule set AM satisfying Constraint 1 terminates.
We omit the (easy) proof. This constraint is very strict as it prohibits propagation.

However, it is not yet sufficient to guarantee confluence.

Constraint 2: ∀Ri, Rj∈AM:
1. Ri is independentfrom Rj: (S(Ri)∪U(Ri)∪E(Ri)) ∩ U(Rj) = ∅.
2. Ri is self-independent: (S(Ri)∪E(Ri)) ∩ U(Ri) = ∅.

This constraint means rules are not allowed to affect (activate or deactivate) each
other or themselves and rule execution order won’t affect the final result.

Theorem 2: A rule set AM satisfying Constraint 2 terminates and is confluent.
This (easy) proof is also omitted.

While Constraint 1 only guarantees termination, constraint 2 is a sufficient
condition for terminationand confluence. The computational complexity of the
algorithm to verify these constraints is O(N2xM2), where N is the number of rules and
M is the number of attributes. These constraints are very strict in the sense that it is
impossible to describe any propagation (a rule that activates other rules). We define
Constraints 3-7 (and 7’) to give more expressive freedom to authors.

Constraint 3: AM = St-rule∪Pr-rule,∀Ri∈St-rule,∀Rj∈Pr-rule: Pri(Ri)>Pri(Rj).
This is a general constraint for rules to be semantically correct in AHS. It means

that the set of rules consists of start rules and propagation rules. This constraint also
describes that in each phase of the transition, the start rules execute before the
propagation. Priorities help but are not enough to guarantee the termination or
confluence.

Constraint 4: The “graph” for every type of concept relationship (except hyperlinks)
is acyclic.

Hyperlinks are not used for propagating user-model changes, so they may have
cycles. Other relationships are used to propagate the changes between different
concepts. It is often not a good design if the relationship type is cyclic, because then
the change propagation may never stop. (For instance, cycles in prerequisite
relationships do not make sense.) But even with acyclic relationship types,
relationships of different types can still interact and cause non-termination that way.

Constraint 5: ∀rel1, rel2∈DM-rel, rel1 ≠ rel2:
∀Ri∈AM(rel1), ∀Rj∈AM(rel2): U(Ri)∩S(Rj) = ∅.

This constraint means that rules that use a different type of relationships cannot
activate each other.

Theorem 3: A rule set AM terminates if it satisfies Constraints 3-5.
Proof (sketch): A rule set AM consists of a finite number of st-rules and pr-rules. The
st-rules won’t trigger each other; they are trigged by external and internal events. The
st-rules may trigger the pr-rules, and the pr-rules may also trigger pr-rules. The
propagation for rules that use a relationship type always terminates because the
relationship graph is aDAG. And rules that use a different type of relationships
cannot trigger each other, so different DAGs cannot be combined to form a cycle.

Constraint 6: ∀rel∈DM-rel: ∀Ri, Rj∈AM(rel), Ri≠ Rj: U(Ri)∩U(Rj) = ∅.
This constraint says that every pair of rules containing the same relationship type

updates disjoint sets of attributes. In a simple propagation case every attribute is
assigned to only once per transition.

Definition 7: ∀rel1, rel2∈DM-rel:
Independent(rel1, rel2) holds if ∀Ri∈AM(rel1), ∀Rj∈AM(rel2), Ri≠ Rj:

(S(Ri)∪U(Ri)∪E(Ri)) ∩ U(Rj) = ∅ and (S(Rj)∪U(Rj)∪E(Rj)) ∩ U(Ri) = ∅
This definition says that all relationship types are independent; the execution order

of rules using different relationship types doesn’t matter to the final result.

Constraint 7: ∀rel1, rel2∈DM-rel, rel1 ≠ rel2, Independent(rel1, rel2) holds.

Constraint 7’: ∀R∈AM, R:C→A: num(A.where) ≤ 1 and
∀rel1, rel2∈DM-rel: (∀Ri∈AM(rel1), ∀Rj∈AM(rel2) , rel1 ≠ rel2: Pri(Ri)>Pri(Rj)) or

(∀Ri∈AM(rel1), ∀Rj∈AM(rel2) , rel1 ≠ rel2: Pri(Ri)<Pri(Rj))
This constraint means that each pr-rule has at most one relationship, and the

propagation order through all relationship graphs is pre-defined. Constraint 7 needs to
calculate many attribute sets, and in most cases we need apply different relationships
separately, so it is more natural to just define some execution order for them. We can
then use Constraint 7’ to replace Constraint 7.

Theorem 4: A rule set AM is confluent if it satisfies Constraint 3-7 (or 7’).
Proof (sketch): Constraints 3-5 guarantee AM to terminate, with Constraint 6 AM
becomes confluent for the propagation through each relationship graph. Furthermore,
with Constraint 7 or Constraint 7’ AM becomes confluent for propagation through all
relationship graphs.

Constraint 3-7 (or 7’) are easy to understand for the author and can be used in most
common AHS. Constraint 3 is easy to verify, while Constraint 4 and Constraint 7’
rely on the DM alone and are known before analyzing a set of rules. As the number
of relationship types is small, the time needed for the algorithm to verify Constraint 3-
7 (or 7’) is similar to the one to verify Constraint 2.

3. Conclusions

In this paper we proposed some constraints on adaptation rules to obtain sufficient
conditions that guarantee termination and confluence for AHS. Checking these
constraints has a much lower computational complexity than the static analysis
method proposed in [WDD01]. Imposing Constraints 3-7 (or 7’) still allows an author
to write propagating adaptation rules in most common AHS.

References

[AHW95] Aiken, A., Widom, J., Hellerstein, J.M., “Static Analysis Techniques for Predicting
the Behavior of Database Production Rules”. ACM Transactions on Database Systems, Vol.
20, nr. 1, pp. 3-41, 1995.

[B96] Brusilovsky, P., “Methods and Techniques of Adaptive Hypermedia”. User Modeling
and User-Adapted Interaction, 6, pp. 87-129, 1996. (Reprinted in Adaptive Hypertext and
Hypermedia, Kluwer Academic Publishers, pp. 1-43, 1998.)

[DHW99] De Bra, P., Houben, G.J., Wu, H., “AHAM: A Dexter-based Reference Model for
Adaptive Hypermedia”. Proceedings of ACM Hypertext’99, Darmstadt, pp. 147-156, 1999.

[WDD01] Wu, H., De Kort, E., De Bra, P., “Design Issues for General Purpose Adaptive
Hypermedia Systems”. Proceedings of the 12th ACM Conference on Hypertext and
Hypermedia, Arhus, Denmark, 2001 (to appear).

